diff --git a/Makefile b/Makefile
index 6bc19cf..ca57f04 100644
--- a/Makefile
+++ b/Makefile
@@ -1,12 +1,11 @@
post.md: post.ipynb
- pipenv run jupyter nbconvert --no-input --template=figures.tpl --to=markdown post.ipynb
-
+ poetry run jupyter nbconvert --no-input --template=blogmd --to=markdown post.ipynb
to_blog: post.md
- cp post.md ../../natronics.org/source/_posts/magnetometer_calibration.md
- mkdir -p ../../natronics.org/source/_posts/magnetometer_calibration/img
- cp img/* ../../natronics.org/source/_posts/magnetometer_calibration/img
- cp -r post_files/ ../../natronics.org/source/_posts/magnetometer_calibration/
+ cp post.md ../natronics.org/src/posts/magnetometer_calibration.md
+ mkdir -p ../natronics.org/src/2019/magnetometer_calibration/img
+ cp img/* ../natronics.org/src/2019/magnetometer_calibration/img
+ cp -r post_files ../natronics.org/src/2019/magnetometer_calibration/
clean:
rm -rf post_files
diff --git a/blogmd/conf.json b/blogmd/conf.json
new file mode 100755
index 0000000..f0e4df9
--- /dev/null
+++ b/blogmd/conf.json
@@ -0,0 +1,6 @@
+{
+ "base_template": "markdown",
+ "mimetypes": {
+ "text/markdown": true
+ }
+}
diff --git a/blogmd/index.md.j2 b/blogmd/index.md.j2
new file mode 100755
index 0000000..1ed3ec2
--- /dev/null
+++ b/blogmd/index.md.j2
@@ -0,0 +1,16 @@
+{% extends 'markdown/index.md.j2'%}
+
+
+{% block data_svg %}
+
+{% endblock data_svg %}
+
+
+{% block data_png %}
+
+{% endblock data_png %}
+
diff --git a/poetry.lock b/poetry.lock
new file mode 100644
index 0000000..d13db0d
--- /dev/null
+++ b/poetry.lock
@@ -0,0 +1,1478 @@
+[[package]]
+name = "appnope"
+version = "0.1.2"
+description = "Disable App Nap on macOS >= 10.9"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "argon2-cffi"
+version = "20.1.0"
+description = "The secure Argon2 password hashing algorithm."
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+cffi = ">=1.0.0"
+six = "*"
+
+[package.extras]
+dev = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest", "sphinx", "wheel", "pre-commit"]
+docs = ["sphinx"]
+tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"]
+
+[[package]]
+name = "async-generator"
+version = "1.10"
+description = "Async generators and context managers for Python 3.5+"
+category = "main"
+optional = false
+python-versions = ">=3.5"
+
+[[package]]
+name = "attrs"
+version = "21.2.0"
+description = "Classes Without Boilerplate"
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+
+[package.extras]
+dev = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "furo", "sphinx", "sphinx-notfound-page", "pre-commit"]
+docs = ["furo", "sphinx", "zope.interface", "sphinx-notfound-page"]
+tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface"]
+tests_no_zope = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins"]
+
+[[package]]
+name = "backcall"
+version = "0.2.0"
+description = "Specifications for callback functions passed in to an API"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "bleach"
+version = "3.3.1"
+description = "An easy safelist-based HTML-sanitizing tool."
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+
+[package.dependencies]
+packaging = "*"
+six = ">=1.9.0"
+webencodings = "*"
+
+[[package]]
+name = "cffi"
+version = "1.14.6"
+description = "Foreign Function Interface for Python calling C code."
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+pycparser = "*"
+
+[[package]]
+name = "colorama"
+version = "0.4.4"
+description = "Cross-platform colored terminal text."
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+
+[[package]]
+name = "cycler"
+version = "0.10.0"
+description = "Composable style cycles"
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+six = "*"
+
+[[package]]
+name = "debugpy"
+version = "1.4.0"
+description = "An implementation of the Debug Adapter Protocol for Python"
+category = "main"
+optional = false
+python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*"
+
+[[package]]
+name = "decorator"
+version = "5.0.9"
+description = "Decorators for Humans"
+category = "main"
+optional = false
+python-versions = ">=3.5"
+
+[[package]]
+name = "defusedxml"
+version = "0.7.1"
+description = "XML bomb protection for Python stdlib modules"
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+
+[[package]]
+name = "entrypoints"
+version = "0.3"
+description = "Discover and load entry points from installed packages."
+category = "main"
+optional = false
+python-versions = ">=2.7"
+
+[[package]]
+name = "h5py"
+version = "3.3.0"
+description = "Read and write HDF5 files from Python"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+
+[package.dependencies]
+numpy = [
+ {version = ">=1.17.5", markers = "python_version == \"3.8\""},
+ {version = ">=1.19.3", markers = "python_version >= \"3.9\""},
+]
+
+[[package]]
+name = "ipykernel"
+version = "6.0.3"
+description = "IPython Kernel for Jupyter"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+
+[package.dependencies]
+appnope = {version = "*", markers = "platform_system == \"Darwin\""}
+debugpy = ">=1.0.0,<2.0"
+ipython = ">=7.23.1,<8.0"
+jupyter-client = "<7.0"
+matplotlib-inline = ">=0.1.0,<0.2.0"
+tornado = ">=4.2,<7.0"
+traitlets = ">=4.1.0,<6.0"
+
+[package.extras]
+test = ["pytest (!=5.3.4)", "pytest-cov", "flaky", "nose", "ipyparallel"]
+
+[[package]]
+name = "ipython"
+version = "7.25.0"
+description = "IPython: Productive Interactive Computing"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+
+[package.dependencies]
+appnope = {version = "*", markers = "sys_platform == \"darwin\""}
+backcall = "*"
+colorama = {version = "*", markers = "sys_platform == \"win32\""}
+decorator = "*"
+jedi = ">=0.16"
+matplotlib-inline = "*"
+pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""}
+pickleshare = "*"
+prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0"
+pygments = "*"
+traitlets = ">=4.2"
+
+[package.extras]
+all = ["Sphinx (>=1.3)", "ipykernel", "ipyparallel", "ipywidgets", "nbconvert", "nbformat", "nose (>=0.10.1)", "notebook", "numpy (>=1.17)", "pygments", "qtconsole", "requests", "testpath"]
+doc = ["Sphinx (>=1.3)"]
+kernel = ["ipykernel"]
+nbconvert = ["nbconvert"]
+nbformat = ["nbformat"]
+notebook = ["notebook", "ipywidgets"]
+parallel = ["ipyparallel"]
+qtconsole = ["qtconsole"]
+test = ["nose (>=0.10.1)", "requests", "testpath", "pygments", "nbformat", "ipykernel", "numpy (>=1.17)"]
+
+[[package]]
+name = "ipython-genutils"
+version = "0.2.0"
+description = "Vestigial utilities from IPython"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "ipywidgets"
+version = "7.6.3"
+description = "IPython HTML widgets for Jupyter"
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+ipykernel = ">=4.5.1"
+ipython = {version = ">=4.0.0", markers = "python_version >= \"3.3\""}
+jupyterlab-widgets = {version = ">=1.0.0", markers = "python_version >= \"3.6\""}
+nbformat = ">=4.2.0"
+traitlets = ">=4.3.1"
+widgetsnbextension = ">=3.5.0,<3.6.0"
+
+[package.extras]
+test = ["pytest (>=3.6.0)", "pytest-cov", "mock"]
+
+[[package]]
+name = "jedi"
+version = "0.18.0"
+description = "An autocompletion tool for Python that can be used for text editors."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+parso = ">=0.8.0,<0.9.0"
+
+[package.extras]
+qa = ["flake8 (==3.8.3)", "mypy (==0.782)"]
+testing = ["Django (<3.1)", "colorama", "docopt", "pytest (<6.0.0)"]
+
+[[package]]
+name = "jinja2"
+version = "3.0.1"
+description = "A very fast and expressive template engine."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+MarkupSafe = ">=2.0"
+
+[package.extras]
+i18n = ["Babel (>=2.7)"]
+
+[[package]]
+name = "jsonschema"
+version = "3.2.0"
+description = "An implementation of JSON Schema validation for Python"
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+attrs = ">=17.4.0"
+pyrsistent = ">=0.14.0"
+six = ">=1.11.0"
+
+[package.extras]
+format = ["idna", "jsonpointer (>1.13)", "rfc3987", "strict-rfc3339", "webcolors"]
+format_nongpl = ["idna", "jsonpointer (>1.13)", "webcolors", "rfc3986-validator (>0.1.0)", "rfc3339-validator"]
+
+[[package]]
+name = "jupyter"
+version = "1.0.0"
+description = "Jupyter metapackage. Install all the Jupyter components in one go."
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+ipykernel = "*"
+ipywidgets = "*"
+jupyter-console = "*"
+nbconvert = "*"
+notebook = "*"
+qtconsole = "*"
+
+[[package]]
+name = "jupyter-client"
+version = "6.2.0"
+description = "Jupyter protocol implementation and client libraries"
+category = "main"
+optional = false
+python-versions = ">=3.6.1"
+
+[package.dependencies]
+jupyter-core = ">=4.6.0"
+nest-asyncio = ">=1.5"
+python-dateutil = ">=2.1"
+pyzmq = ">=13"
+tornado = ">=4.1"
+traitlets = "*"
+
+[package.extras]
+doc = ["sphinx (>=1.3.6)", "sphinx-rtd-theme", "sphinxcontrib-github-alt"]
+test = ["async-generator", "ipykernel", "ipython", "mock", "pytest-asyncio", "pytest-timeout", "pytest", "mypy", "pre-commit", "jedi (<0.18)"]
+
+[[package]]
+name = "jupyter-console"
+version = "6.4.0"
+description = "Jupyter terminal console"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+ipykernel = "*"
+ipython = "*"
+jupyter-client = "*"
+prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0"
+pygments = "*"
+
+[package.extras]
+test = ["pexpect"]
+
+[[package]]
+name = "jupyter-core"
+version = "4.7.1"
+description = "Jupyter core package. A base package on which Jupyter projects rely."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+pywin32 = {version = ">=1.0", markers = "sys_platform == \"win32\""}
+traitlets = "*"
+
+[[package]]
+name = "jupyterlab-pygments"
+version = "0.1.2"
+description = "Pygments theme using JupyterLab CSS variables"
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+pygments = ">=2.4.1,<3"
+
+[[package]]
+name = "jupyterlab-widgets"
+version = "1.0.0"
+description = "A JupyterLab extension."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[[package]]
+name = "kiwisolver"
+version = "1.3.1"
+description = "A fast implementation of the Cassowary constraint solver"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[[package]]
+name = "markupsafe"
+version = "2.0.1"
+description = "Safely add untrusted strings to HTML/XML markup."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[[package]]
+name = "matplotlib"
+version = "3.4.2"
+description = "Python plotting package"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+
+[package.dependencies]
+cycler = ">=0.10"
+kiwisolver = ">=1.0.1"
+numpy = ">=1.16"
+pillow = ">=6.2.0"
+pyparsing = ">=2.2.1"
+python-dateutil = ">=2.7"
+
+[[package]]
+name = "matplotlib-inline"
+version = "0.1.2"
+description = "Inline Matplotlib backend for Jupyter"
+category = "main"
+optional = false
+python-versions = ">=3.5"
+
+[package.dependencies]
+traitlets = "*"
+
+[[package]]
+name = "mistune"
+version = "0.8.4"
+description = "The fastest markdown parser in pure Python"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "nbclient"
+version = "0.5.3"
+description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor."
+category = "main"
+optional = false
+python-versions = ">=3.6.1"
+
+[package.dependencies]
+async-generator = "*"
+jupyter-client = ">=6.1.5"
+nbformat = ">=5.0"
+nest-asyncio = "*"
+traitlets = ">=4.2"
+
+[package.extras]
+dev = ["codecov", "coverage", "ipython", "ipykernel", "ipywidgets", "pytest (>=4.1)", "pytest-cov (>=2.6.1)", "check-manifest", "flake8", "mypy", "tox", "bumpversion", "xmltodict", "pip (>=18.1)", "wheel (>=0.31.0)", "setuptools (>=38.6.0)", "twine (>=1.11.0)", "black"]
+sphinx = ["Sphinx (>=1.7)", "sphinx-book-theme", "mock", "moto", "myst-parser"]
+test = ["codecov", "coverage", "ipython", "ipykernel", "ipywidgets", "pytest (>=4.1)", "pytest-cov (>=2.6.1)", "check-manifest", "flake8", "mypy", "tox", "bumpversion", "xmltodict", "pip (>=18.1)", "wheel (>=0.31.0)", "setuptools (>=38.6.0)", "twine (>=1.11.0)", "black"]
+
+[[package]]
+name = "nbconvert"
+version = "6.1.0"
+description = "Converting Jupyter Notebooks"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+
+[package.dependencies]
+bleach = "*"
+defusedxml = "*"
+entrypoints = ">=0.2.2"
+jinja2 = ">=2.4"
+jupyter-core = "*"
+jupyterlab-pygments = "*"
+mistune = ">=0.8.1,<2"
+nbclient = ">=0.5.0,<0.6.0"
+nbformat = ">=4.4"
+pandocfilters = ">=1.4.1"
+pygments = ">=2.4.1"
+testpath = "*"
+traitlets = ">=5.0"
+
+[package.extras]
+all = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pyppeteer (==0.2.2)", "tornado (>=4.0)", "sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"]
+docs = ["sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"]
+serve = ["tornado (>=4.0)"]
+test = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pyppeteer (==0.2.2)"]
+webpdf = ["pyppeteer (==0.2.2)"]
+
+[[package]]
+name = "nbformat"
+version = "5.1.3"
+description = "The Jupyter Notebook format"
+category = "main"
+optional = false
+python-versions = ">=3.5"
+
+[package.dependencies]
+ipython-genutils = "*"
+jsonschema = ">=2.4,<2.5.0 || >2.5.0"
+jupyter-core = "*"
+traitlets = ">=4.1"
+
+[package.extras]
+fast = ["fastjsonschema"]
+test = ["check-manifest", "fastjsonschema", "testpath", "pytest", "pytest-cov"]
+
+[[package]]
+name = "nest-asyncio"
+version = "1.5.1"
+description = "Patch asyncio to allow nested event loops"
+category = "main"
+optional = false
+python-versions = ">=3.5"
+
+[[package]]
+name = "notebook"
+version = "6.4.0"
+description = "A web-based notebook environment for interactive computing"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+argon2-cffi = "*"
+ipykernel = "*"
+ipython-genutils = "*"
+jinja2 = "*"
+jupyter-client = ">=5.3.4"
+jupyter-core = ">=4.6.1"
+nbconvert = "*"
+nbformat = "*"
+prometheus-client = "*"
+pyzmq = ">=17"
+Send2Trash = ">=1.5.0"
+terminado = ">=0.8.3"
+tornado = ">=6.1"
+traitlets = ">=4.2.1"
+
+[package.extras]
+docs = ["sphinx", "nbsphinx", "sphinxcontrib-github-alt", "sphinx-rtd-theme", "myst-parser"]
+json-logging = ["json-logging"]
+test = ["pytest", "coverage", "requests", "nbval", "selenium", "pytest-cov", "requests-unixsocket"]
+
+[[package]]
+name = "numpy"
+version = "1.21.1"
+description = "NumPy is the fundamental package for array computing with Python."
+category = "main"
+optional = false
+python-versions = ">=3.7"
+
+[[package]]
+name = "packaging"
+version = "21.0"
+description = "Core utilities for Python packages"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+pyparsing = ">=2.0.2"
+
+[[package]]
+name = "pandocfilters"
+version = "1.4.3"
+description = "Utilities for writing pandoc filters in python"
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
+
+[[package]]
+name = "parso"
+version = "0.8.2"
+description = "A Python Parser"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.extras]
+qa = ["flake8 (==3.8.3)", "mypy (==0.782)"]
+testing = ["docopt", "pytest (<6.0.0)"]
+
+[[package]]
+name = "pexpect"
+version = "4.8.0"
+description = "Pexpect allows easy control of interactive console applications."
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+ptyprocess = ">=0.5"
+
+[[package]]
+name = "pickleshare"
+version = "0.7.5"
+description = "Tiny 'shelve'-like database with concurrency support"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "pillow"
+version = "8.3.1"
+description = "Python Imaging Library (Fork)"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[[package]]
+name = "prometheus-client"
+version = "0.11.0"
+description = "Python client for the Prometheus monitoring system."
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
+
+[package.extras]
+twisted = ["twisted"]
+
+[[package]]
+name = "prompt-toolkit"
+version = "3.0.19"
+description = "Library for building powerful interactive command lines in Python"
+category = "main"
+optional = false
+python-versions = ">=3.6.1"
+
+[package.dependencies]
+wcwidth = "*"
+
+[[package]]
+name = "ptyprocess"
+version = "0.7.0"
+description = "Run a subprocess in a pseudo terminal"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "py"
+version = "1.10.0"
+description = "library with cross-python path, ini-parsing, io, code, log facilities"
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
+
+[[package]]
+name = "pycparser"
+version = "2.20"
+description = "C parser in Python"
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
+
+[[package]]
+name = "pygments"
+version = "2.9.0"
+description = "Pygments is a syntax highlighting package written in Python."
+category = "main"
+optional = false
+python-versions = ">=3.5"
+
+[[package]]
+name = "pyparsing"
+version = "2.4.7"
+description = "Python parsing module"
+category = "main"
+optional = false
+python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
+
+[[package]]
+name = "pyrsistent"
+version = "0.18.0"
+description = "Persistent/Functional/Immutable data structures"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[[package]]
+name = "python-dateutil"
+version = "2.8.2"
+description = "Extensions to the standard Python datetime module"
+category = "main"
+optional = false
+python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
+
+[package.dependencies]
+six = ">=1.5"
+
+[[package]]
+name = "pywin32"
+version = "301"
+description = "Python for Window Extensions"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "pywinpty"
+version = "1.1.3"
+description = "Pseudo terminal support for Windows from Python."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[[package]]
+name = "pyzmq"
+version = "22.1.0"
+description = "Python bindings for 0MQ"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+cffi = {version = "*", markers = "implementation_name == \"pypy\""}
+py = {version = "*", markers = "implementation_name == \"pypy\""}
+
+[[package]]
+name = "qtconsole"
+version = "5.1.1"
+description = "Jupyter Qt console"
+category = "main"
+optional = false
+python-versions = ">= 3.6"
+
+[package.dependencies]
+ipykernel = ">=4.1"
+ipython-genutils = "*"
+jupyter-client = ">=4.1"
+jupyter-core = "*"
+pygments = "*"
+pyzmq = ">=17.1"
+qtpy = "*"
+traitlets = "*"
+
+[package.extras]
+doc = ["Sphinx (>=1.3)"]
+test = ["flaky", "pytest", "pytest-qt"]
+
+[[package]]
+name = "qtpy"
+version = "1.9.0"
+description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5, PyQt4 and PySide) and additional custom QWidgets."
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "scipy"
+version = "1.7.0"
+description = "SciPy: Scientific Library for Python"
+category = "main"
+optional = false
+python-versions = ">=3.7,<3.10"
+
+[package.dependencies]
+numpy = ">=1.16.5,<1.23.0"
+
+[[package]]
+name = "send2trash"
+version = "1.7.1"
+description = "Send file to trash natively under Mac OS X, Windows and Linux."
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.extras]
+win32 = ["pywin32"]
+
+[[package]]
+name = "six"
+version = "1.16.0"
+description = "Python 2 and 3 compatibility utilities"
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
+
+[[package]]
+name = "terminado"
+version = "0.10.1"
+description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+
+[package.dependencies]
+ptyprocess = {version = "*", markers = "os_name != \"nt\""}
+pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""}
+tornado = ">=4"
+
+[package.extras]
+test = ["pytest"]
+
+[[package]]
+name = "testpath"
+version = "0.5.0"
+description = "Test utilities for code working with files and commands"
+category = "main"
+optional = false
+python-versions = ">= 3.5"
+
+[package.extras]
+test = ["pytest", "pathlib2"]
+
+[[package]]
+name = "tornado"
+version = "6.1"
+description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed."
+category = "main"
+optional = false
+python-versions = ">= 3.5"
+
+[[package]]
+name = "traitlets"
+version = "5.0.5"
+description = "Traitlets Python configuration system"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+
+[package.dependencies]
+ipython-genutils = "*"
+
+[package.extras]
+test = ["pytest"]
+
+[[package]]
+name = "wcwidth"
+version = "0.2.5"
+description = "Measures the displayed width of unicode strings in a terminal"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "webencodings"
+version = "0.5.1"
+description = "Character encoding aliases for legacy web content"
+category = "main"
+optional = false
+python-versions = "*"
+
+[[package]]
+name = "widgetsnbextension"
+version = "3.5.1"
+description = "IPython HTML widgets for Jupyter"
+category = "main"
+optional = false
+python-versions = "*"
+
+[package.dependencies]
+notebook = ">=4.4.1"
+
+[metadata]
+lock-version = "1.1"
+python-versions = ">=3.8,<3.10"
+content-hash = "ba7390235ccd817c584ca7ee7a0c75f0318e2f82a0f02be4f384e1265c056875"
+
+[metadata.files]
+appnope = [
+ {file = "appnope-0.1.2-py2.py3-none-any.whl", hash = "sha256:93aa393e9d6c54c5cd570ccadd8edad61ea0c4b9ea7a01409020c9aa019eb442"},
+ {file = "appnope-0.1.2.tar.gz", hash = "sha256:dd83cd4b5b460958838f6eb3000c660b1f9caf2a5b1de4264e941512f603258a"},
+]
+argon2-cffi = [
+ {file = "argon2-cffi-20.1.0.tar.gz", hash = "sha256:d8029b2d3e4b4cea770e9e5a0104dd8fa185c1724a0f01528ae4826a6d25f97d"},
+ {file = "argon2_cffi-20.1.0-cp27-cp27m-macosx_10_6_intel.whl", hash = "sha256:6ea92c980586931a816d61e4faf6c192b4abce89aa767ff6581e6ddc985ed003"},
+ {file = "argon2_cffi-20.1.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:05a8ac07c7026542377e38389638a8a1e9b78f1cd8439cd7493b39f08dd75fbf"},
+ {file = "argon2_cffi-20.1.0-cp27-cp27m-win32.whl", hash = "sha256:0bf066bc049332489bb2d75f69216416329d9dc65deee127152caeb16e5ce7d5"},
+ {file = "argon2_cffi-20.1.0-cp27-cp27m-win_amd64.whl", hash = "sha256:57358570592c46c420300ec94f2ff3b32cbccd10d38bdc12dc6979c4a8484fbc"},
+ {file = "argon2_cffi-20.1.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7d455c802727710e9dfa69b74ccaab04568386ca17b0ad36350b622cd34606fe"},
+ {file = "argon2_cffi-20.1.0-cp35-abi3-manylinux1_x86_64.whl", hash = "sha256:b160416adc0f012fb1f12588a5e6954889510f82f698e23ed4f4fa57f12a0647"},
+ {file = "argon2_cffi-20.1.0-cp35-cp35m-win32.whl", hash = "sha256:9bee3212ba4f560af397b6d7146848c32a800652301843df06b9e8f68f0f7361"},
+ {file = "argon2_cffi-20.1.0-cp35-cp35m-win_amd64.whl", hash = "sha256:392c3c2ef91d12da510cfb6f9bae52512a4552573a9e27600bdb800e05905d2b"},
+ {file = "argon2_cffi-20.1.0-cp36-cp36m-win32.whl", hash = "sha256:ba7209b608945b889457f949cc04c8e762bed4fe3fec88ae9a6b7765ae82e496"},
+ {file = "argon2_cffi-20.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:da7f0445b71db6d3a72462e04f36544b0de871289b0bc8a7cc87c0f5ec7079fa"},
+ {file = "argon2_cffi-20.1.0-cp37-abi3-macosx_10_6_intel.whl", hash = "sha256:cc0e028b209a5483b6846053d5fd7165f460a1f14774d79e632e75e7ae64b82b"},
+ {file = "argon2_cffi-20.1.0-cp37-cp37m-win32.whl", hash = "sha256:18dee20e25e4be86680b178b35ccfc5d495ebd5792cd00781548d50880fee5c5"},
+ {file = "argon2_cffi-20.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:6678bb047373f52bcff02db8afab0d2a77d83bde61cfecea7c5c62e2335cb203"},
+ {file = "argon2_cffi-20.1.0-cp38-cp38-win32.whl", hash = "sha256:77e909cc756ef81d6abb60524d259d959bab384832f0c651ed7dcb6e5ccdbb78"},
+ {file = "argon2_cffi-20.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:9dfd5197852530294ecb5795c97a823839258dfd5eb9420233c7cfedec2058f2"},
+ {file = "argon2_cffi-20.1.0-cp39-cp39-win32.whl", hash = "sha256:e2db6e85c057c16d0bd3b4d2b04f270a7467c147381e8fd73cbbe5bc719832be"},
+ {file = "argon2_cffi-20.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:8a84934bd818e14a17943de8099d41160da4a336bcc699bb4c394bbb9b94bd32"},
+]
+async-generator = [
+ {file = "async_generator-1.10-py3-none-any.whl", hash = "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b"},
+ {file = "async_generator-1.10.tar.gz", hash = "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144"},
+]
+attrs = [
+ {file = "attrs-21.2.0-py2.py3-none-any.whl", hash = "sha256:149e90d6d8ac20db7a955ad60cf0e6881a3f20d37096140088356da6c716b0b1"},
+ {file = "attrs-21.2.0.tar.gz", hash = "sha256:ef6aaac3ca6cd92904cdd0d83f629a15f18053ec84e6432106f7a4d04ae4f5fb"},
+]
+backcall = [
+ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"},
+ {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"},
+]
+bleach = [
+ {file = "bleach-3.3.1-py2.py3-none-any.whl", hash = "sha256:ae976d7174bba988c0b632def82fdc94235756edfb14e6558a9c5be555c9fb78"},
+ {file = "bleach-3.3.1.tar.gz", hash = "sha256:306483a5a9795474160ad57fce3ddd1b50551e981eed8e15a582d34cef28aafa"},
+]
+cffi = [
+ {file = "cffi-1.14.6-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:22b9c3c320171c108e903d61a3723b51e37aaa8c81255b5e7ce102775bd01e2c"},
+ {file = "cffi-1.14.6-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:f0c5d1acbfca6ebdd6b1e3eded8d261affb6ddcf2186205518f1428b8569bb99"},
+ {file = "cffi-1.14.6-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:99f27fefe34c37ba9875f224a8f36e31d744d8083e00f520f133cab79ad5e819"},
+ {file = "cffi-1.14.6-cp27-cp27m-win32.whl", hash = "sha256:55af55e32ae468e9946f741a5d51f9896da6b9bf0bbdd326843fec05c730eb20"},
+ {file = "cffi-1.14.6-cp27-cp27m-win_amd64.whl", hash = "sha256:7bcac9a2b4fdbed2c16fa5681356d7121ecabf041f18d97ed5b8e0dd38a80224"},
+ {file = "cffi-1.14.6-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:ed38b924ce794e505647f7c331b22a693bee1538fdf46b0222c4717b42f744e7"},
+ {file = "cffi-1.14.6-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:e22dcb48709fc51a7b58a927391b23ab37eb3737a98ac4338e2448bef8559b33"},
+ {file = "cffi-1.14.6-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:aedb15f0a5a5949ecb129a82b72b19df97bbbca024081ed2ef88bd5c0a610534"},
+ {file = "cffi-1.14.6-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:48916e459c54c4a70e52745639f1db524542140433599e13911b2f329834276a"},
+ {file = "cffi-1.14.6-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:f627688813d0a4140153ff532537fbe4afea5a3dffce1f9deb7f91f848a832b5"},
+ {file = "cffi-1.14.6-cp35-cp35m-win32.whl", hash = "sha256:f0010c6f9d1a4011e429109fda55a225921e3206e7f62a0c22a35344bfd13cca"},
+ {file = "cffi-1.14.6-cp35-cp35m-win_amd64.whl", hash = "sha256:57e555a9feb4a8460415f1aac331a2dc833b1115284f7ded7278b54afc5bd218"},
+ {file = "cffi-1.14.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e8c6a99be100371dbb046880e7a282152aa5d6127ae01783e37662ef73850d8f"},
+ {file = "cffi-1.14.6-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:19ca0dbdeda3b2615421d54bef8985f72af6e0c47082a8d26122adac81a95872"},
+ {file = "cffi-1.14.6-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:d950695ae4381ecd856bcaf2b1e866720e4ab9a1498cba61c602e56630ca7195"},
+ {file = "cffi-1.14.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9dc245e3ac69c92ee4c167fbdd7428ec1956d4e754223124991ef29eb57a09d"},
+ {file = "cffi-1.14.6-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8661b2ce9694ca01c529bfa204dbb144b275a31685a075ce123f12331be790b"},
+ {file = "cffi-1.14.6-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b315d709717a99f4b27b59b021e6207c64620790ca3e0bde636a6c7f14618abb"},
+ {file = "cffi-1.14.6-cp36-cp36m-win32.whl", hash = "sha256:80b06212075346b5546b0417b9f2bf467fea3bfe7352f781ffc05a8ab24ba14a"},
+ {file = "cffi-1.14.6-cp36-cp36m-win_amd64.whl", hash = "sha256:a9da7010cec5a12193d1af9872a00888f396aba3dc79186604a09ea3ee7c029e"},
+ {file = "cffi-1.14.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4373612d59c404baeb7cbd788a18b2b2a8331abcc84c3ba40051fcd18b17a4d5"},
+ {file = "cffi-1.14.6-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:f10afb1004f102c7868ebfe91c28f4a712227fe4cb24974350ace1f90e1febbf"},
+ {file = "cffi-1.14.6-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:fd4305f86f53dfd8cd3522269ed7fc34856a8ee3709a5e28b2836b2db9d4cd69"},
+ {file = "cffi-1.14.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d6169cb3c6c2ad50db5b868db6491a790300ade1ed5d1da29289d73bbe40b56"},
+ {file = "cffi-1.14.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d4b68e216fc65e9fe4f524c177b54964af043dde734807586cf5435af84045c"},
+ {file = "cffi-1.14.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33791e8a2dc2953f28b8d8d300dde42dd929ac28f974c4b4c6272cb2955cb762"},
+ {file = "cffi-1.14.6-cp37-cp37m-win32.whl", hash = "sha256:0c0591bee64e438883b0c92a7bed78f6290d40bf02e54c5bf0978eaf36061771"},
+ {file = "cffi-1.14.6-cp37-cp37m-win_amd64.whl", hash = "sha256:8eb687582ed7cd8c4bdbff3df6c0da443eb89c3c72e6e5dcdd9c81729712791a"},
+ {file = "cffi-1.14.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ba6f2b3f452e150945d58f4badd92310449876c4c954836cfb1803bdd7b422f0"},
+ {file = "cffi-1.14.6-cp38-cp38-manylinux1_i686.whl", hash = "sha256:64fda793737bc4037521d4899be780534b9aea552eb673b9833b01f945904c2e"},
+ {file = "cffi-1.14.6-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:9f3e33c28cd39d1b655ed1ba7247133b6f7fc16fa16887b120c0c670e35ce346"},
+ {file = "cffi-1.14.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26bb2549b72708c833f5abe62b756176022a7b9a7f689b571e74c8478ead51dc"},
+ {file = "cffi-1.14.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb687a11f0a7a1839719edd80f41e459cc5366857ecbed383ff376c4e3cc6afd"},
+ {file = "cffi-1.14.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d2ad4d668a5c0645d281dcd17aff2be3212bc109b33814bbb15c4939f44181cc"},
+ {file = "cffi-1.14.6-cp38-cp38-win32.whl", hash = "sha256:487d63e1454627c8e47dd230025780e91869cfba4c753a74fda196a1f6ad6548"},
+ {file = "cffi-1.14.6-cp38-cp38-win_amd64.whl", hash = "sha256:c33d18eb6e6bc36f09d793c0dc58b0211fccc6ae5149b808da4a62660678b156"},
+ {file = "cffi-1.14.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:06c54a68935738d206570b20da5ef2b6b6d92b38ef3ec45c5422c0ebaf338d4d"},
+ {file = "cffi-1.14.6-cp39-cp39-manylinux1_i686.whl", hash = "sha256:f174135f5609428cc6e1b9090f9268f5c8935fddb1b25ccb8255a2d50de6789e"},
+ {file = "cffi-1.14.6-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:f3ebe6e73c319340830a9b2825d32eb6d8475c1dac020b4f0aa774ee3b898d1c"},
+ {file = "cffi-1.14.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c8d896becff2fa653dc4438b54a5a25a971d1f4110b32bd3068db3722c80202"},
+ {file = "cffi-1.14.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4922cd707b25e623b902c86188aca466d3620892db76c0bdd7b99a3d5e61d35f"},
+ {file = "cffi-1.14.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c9e005e9bd57bc987764c32a1bee4364c44fdc11a3cc20a40b93b444984f2b87"},
+ {file = "cffi-1.14.6-cp39-cp39-win32.whl", hash = "sha256:eb9e2a346c5238a30a746893f23a9535e700f8192a68c07c0258e7ece6ff3728"},
+ {file = "cffi-1.14.6-cp39-cp39-win_amd64.whl", hash = "sha256:818014c754cd3dba7229c0f5884396264d51ffb87ec86e927ef0be140bfdb0d2"},
+ {file = "cffi-1.14.6.tar.gz", hash = "sha256:c9a875ce9d7fe32887784274dd533c57909b7b1dcadcc128a2ac21331a9765dd"},
+]
+colorama = [
+ {file = "colorama-0.4.4-py2.py3-none-any.whl", hash = "sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2"},
+ {file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"},
+]
+cycler = [
+ {file = "cycler-0.10.0-py2.py3-none-any.whl", hash = "sha256:1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d"},
+ {file = "cycler-0.10.0.tar.gz", hash = "sha256:cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8"},
+]
+debugpy = [
+ {file = "debugpy-1.4.0-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:55d12ee03b3b705af5250b8344a87fbd9bb720d00bd9d281d2998dbf9f60c8d3"},
+ {file = "debugpy-1.4.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:712ef6a4be1ee4b9a954c6f36788ac12686dc1d5eeef501e0b81e1c89c16484d"},
+ {file = "debugpy-1.4.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:93596f34a3a27b0023fdb5313600cf25035739e246864d1d6c60d16e2a337e36"},
+ {file = "debugpy-1.4.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:651696be9ca40384dd17f048ada32fba9049dec15e7d12be24b0452fd211ea80"},
+ {file = "debugpy-1.4.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:07f93fa6c6162e199c4f168619c87ae5f5bca1c1331f46399684bfb38d307fd9"},
+ {file = "debugpy-1.4.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d3130bec374b2a07edeeb21b7bd3a88a8b83a37b4adc4c13468c5f40f503825d"},
+ {file = "debugpy-1.4.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:8d77d4a0ab72c5a60df0618385be0562b938f6f5844a7f2f3031fa832167392c"},
+ {file = "debugpy-1.4.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:26902ed6f3c794b1e810d03937e269769b950a52427baf8d598b831f347988ea"},
+ {file = "debugpy-1.4.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:6644b5fc52ce5ab9ff8396b0d20ae2ea5d8fa4c8f42dd5a3f0355d1fffcb6f40"},
+ {file = "debugpy-1.4.0-cp35-cp35m-macosx_10_14_x86_64.whl", hash = "sha256:22fc360e62cc3a05aff0540384de877b2fa1697a0f2d02feda33e2ce6c3a0895"},
+ {file = "debugpy-1.4.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:467410cd8f63a607cc7477a5988f23b6bfdc3f89efd7426e86139df27fc42a9b"},
+ {file = "debugpy-1.4.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:8f350372d073bf8dc444770f22cdd10eb2bef5eb22ed62e1c8a07412fcdc5989"},
+ {file = "debugpy-1.4.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:640a6f7e986b30f376be95375d14fd827145b391d2b55f4f5254f36480683861"},
+ {file = "debugpy-1.4.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:a23a76357dbf085fd0e4c06bf524844eb10741111d652fb481fbf123a871a81d"},
+ {file = "debugpy-1.4.0-cp35-cp35m-manylinux2014_i686.whl", hash = "sha256:7d97064025052cc1ac6b7bca2525aad2338e7806d197d37a0a142b88b19ea5f5"},
+ {file = "debugpy-1.4.0-cp35-cp35m-manylinux2014_x86_64.whl", hash = "sha256:4269df53524fe86d0f12a5e9a944dfbba5d59d0a7ceccfac3d94e59f70c694f7"},
+ {file = "debugpy-1.4.0-cp35-cp35m-win32.whl", hash = "sha256:e53601997dff35856ccd0a9815795a28893227f251681aad76b79d696a8c4d79"},
+ {file = "debugpy-1.4.0-cp35-cp35m-win_amd64.whl", hash = "sha256:6cb41e54fc5f26655c44ad98224297d152fce723e0974aaa3d511061098fb2c3"},
+ {file = "debugpy-1.4.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:c33dd64172bbf6f07c0549b1a17c822dba564c633ce911579c72cbbf9842b86b"},
+ {file = "debugpy-1.4.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:d35db1e5e9e0a17c78b5367674abbcc42768fc90e3a3b440407f82eb425485ad"},
+ {file = "debugpy-1.4.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:5a0bbede84c8e67e3da4214b25780a5ad2f3e68aa50b6f317cf94303e42562bb"},
+ {file = "debugpy-1.4.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:827df66e4c66afaf12a59bc4e1de104c7064445a24e36e93ae62bff1242d6bc5"},
+ {file = "debugpy-1.4.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:0e5f07fffcf3b7763fec78f74cf69d91ee95fe012da266cc62ed874e6b702848"},
+ {file = "debugpy-1.4.0-cp36-cp36m-manylinux2014_i686.whl", hash = "sha256:169c8ac3f21919707ce29d879ae2e03c63f07676c90efef470f520556295e6ab"},
+ {file = "debugpy-1.4.0-cp36-cp36m-manylinux2014_x86_64.whl", hash = "sha256:c9fc6cf27b033fef2dcb106793d929da3d617dd80432395705ec4f29ee80510c"},
+ {file = "debugpy-1.4.0-cp36-cp36m-win32.whl", hash = "sha256:75d8291688dc753eef3fcfed747f65425454163c82ff32c09de5f70840ea5fe9"},
+ {file = "debugpy-1.4.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d03181a40cb31468165426421d2015c4e30e72b67e463a16e3e62e4276c7e3ee"},
+ {file = "debugpy-1.4.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:909fb7212ce59bb126c5844c42c4ae6535c36803bf4d8edcc9e81b457da22bd9"},
+ {file = "debugpy-1.4.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:ecf8f405c78029b1adb6e49f3672dc448e48f1d21b79c8e8ca199cc5290a0b89"},
+ {file = "debugpy-1.4.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:79199eeab37241d3c9665bdb4d77c725060bd8970c8adbdc6d3a1f361cf729a5"},
+ {file = "debugpy-1.4.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:3a3a1efc0465502c961193e946d445ed6c7f34a4f23c39fcbe14d888e88eb8cc"},
+ {file = "debugpy-1.4.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:00cd8bd26511ccf5943c01def9aa8f454acab10fb3dc0067f394d713c1e5ea5c"},
+ {file = "debugpy-1.4.0-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:7964a36d6a101b138efe6de920243b9df8e3ea7089dfb68881bd7a10f3badbd8"},
+ {file = "debugpy-1.4.0-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:bf3e4a603ef6ffec622ab77b0f8ddfb9c03bbec440e0b154d4374615d88fe44b"},
+ {file = "debugpy-1.4.0-cp37-cp37m-win32.whl", hash = "sha256:5ac3151097636a4ae08efaf307dc91d1bea2fad2ceb75df5f9bcae038b48b6b3"},
+ {file = "debugpy-1.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d61cad58a0efb22b74c5e0748f730a25028e5bb7aa1b72299edb035091cb6526"},
+ {file = "debugpy-1.4.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:a0b7246b9ef6921f5af95fded6664fd6539b215ec43645abbb0da5815f61faba"},
+ {file = "debugpy-1.4.0-cp38-cp38-manylinux1_i686.whl", hash = "sha256:aef32550cf10ea3bdaf4c57c1c0b512a4b662a9c5533376574544e3b70fae958"},
+ {file = "debugpy-1.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a17225ed3a13476779692ff1ee4cdd15bde9ac6740e887a248577046c5e6579a"},
+ {file = "debugpy-1.4.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:6acf7a141de07c60031873be6388cf41782c21c4a19eca4916cfcc86fb3d7ce6"},
+ {file = "debugpy-1.4.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:bed2c4170907ca2e23d1880f1326d8c9fb99d88104b90c5060a1af884e720792"},
+ {file = "debugpy-1.4.0-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:4a96eb7e352cdcfb6506a22743e6e4813a6b306eee1e78c0881324f73c56a971"},
+ {file = "debugpy-1.4.0-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:b65ed04d21b48846457a2809f28ec4cf3bf2878441bab5ae6a728bc03067e607"},
+ {file = "debugpy-1.4.0-cp38-cp38-win32.whl", hash = "sha256:f3a2a81c5d62795c5fa6b974f103be99dc8ff6944e762437332fb44e54d6e93a"},
+ {file = "debugpy-1.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:ba5e75037b078542d3bc62a16ecde68ee2a9b49479d34725c4d2be36570a41ac"},
+ {file = "debugpy-1.4.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:658068983541ec4dea7408fdf9cf79308e0990b287bd915ed737094afcb83ed8"},
+ {file = "debugpy-1.4.0-cp39-cp39-manylinux1_i686.whl", hash = "sha256:7fa3b046970bfc468f5b9dc67e56068b009b4f069b5e5fd1bfeba5764b229f62"},
+ {file = "debugpy-1.4.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:6d6aed4ad8bd867b1fa165290fd0c99f00c1db77c95f75664d68d575a72de146"},
+ {file = "debugpy-1.4.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:b6f7e6a397f3e64e282a5dedce8752b2f122eb55d3c9116834f06ecd3a04af6b"},
+ {file = "debugpy-1.4.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:c8e6322520c1f9c2b5e9d6b226c718cc12ea69c4901fd2be62e5b782197de798"},
+ {file = "debugpy-1.4.0-cp39-cp39-manylinux2014_i686.whl", hash = "sha256:54b119c055e2a77e9a0a6b7c5e4fd6552c1ec701d1da1f491bd9e7dc3d010628"},
+ {file = "debugpy-1.4.0-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:5f6433ba97378ac67f4f5b40793490ee82b4b67bd77e11f3c8fbabfa69d91fef"},
+ {file = "debugpy-1.4.0-cp39-cp39-win32.whl", hash = "sha256:097be575dcd5e8452e048cebd7dd0d249551a8b663d329cb3e5a76448225ef31"},
+ {file = "debugpy-1.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:e373c3a6819895f47ad87341b8efa9d74b584bce20e9e26be4b5ee1c56ddd8ea"},
+ {file = "debugpy-1.4.0-py2.py3-none-any.whl", hash = "sha256:5893abf46c88068b0a12ef385d746b060a711364e3bf4a40d508ed24af3abe52"},
+ {file = "debugpy-1.4.0.zip", hash = "sha256:32fbfb79b94f7efedef20207ea59fabe897de072e5a58d084f63f366055e78f5"},
+]
+decorator = [
+ {file = "decorator-5.0.9-py3-none-any.whl", hash = "sha256:6e5c199c16f7a9f0e3a61a4a54b3d27e7dad0dbdde92b944426cb20914376323"},
+ {file = "decorator-5.0.9.tar.gz", hash = "sha256:72ecfba4320a893c53f9706bebb2d55c270c1e51a28789361aa93e4a21319ed5"},
+]
+defusedxml = [
+ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"},
+ {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"},
+]
+entrypoints = [
+ {file = "entrypoints-0.3-py2.py3-none-any.whl", hash = "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19"},
+ {file = "entrypoints-0.3.tar.gz", hash = "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451"},
+]
+h5py = [
+ {file = "h5py-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f3bba8ffddd1fd2bf06127c5ff7b73f022cc1c8b7164355ddc760dc3f8570136"},
+ {file = "h5py-3.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:baef1a2cdef287a83e7f95ce9e0f4d762a9852fe7117b471063442c78b973695"},
+ {file = "h5py-3.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:8e09b682e4059c8cd259ddcc34bee35d639b9170105efeeae6ad195e7c1cea7a"},
+ {file = "h5py-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:89d7e10409b62fed81c571e35798763cb8375442b98f8ebfc52ba41ac019e081"},
+ {file = "h5py-3.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7ca7d23ebbdd59a4be9b4820de52fe67adc74e6a44d5084881305461765aac47"},
+ {file = "h5py-3.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:e0ea3330bf136f8213e43db67448994046ce501585dddc7ea4e8ceef0ef1600c"},
+ {file = "h5py-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:13355234c004ff8bd819f7d3420188aa1936b17d7f8470d622974a373421b7a5"},
+ {file = "h5py-3.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:09e78cefdef0b7566ab66366c5c7d9984c7b23142245bd51b82b744ad1eebf65"},
+ {file = "h5py-3.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:5e2f22e66a3fb1815405cfe5711670450c973b8552507c535a546a23a468af3d"},
+ {file = "h5py-3.3.0.tar.gz", hash = "sha256:e0dac887d779929778b3cfd13309a939359cc9e74756fc09af7c527a82797186"},
+]
+ipykernel = [
+ {file = "ipykernel-6.0.3-py3-none-any.whl", hash = "sha256:9f9f41a14caf2fde2b7802446adf83885afcbf50585a46d6c687292599a3c3af"},
+ {file = "ipykernel-6.0.3.tar.gz", hash = "sha256:0df34a78c7e1422800d6078cde65ccdcdb859597046c338c759db4dbc535c58f"},
+]
+ipython = [
+ {file = "ipython-7.25.0-py3-none-any.whl", hash = "sha256:aa21412f2b04ad1a652e30564fff6b4de04726ce875eab222c8430edc6db383a"},
+ {file = "ipython-7.25.0.tar.gz", hash = "sha256:54bbd1fe3882457aaf28ae060a5ccdef97f212a741754e420028d4ec5c2291dc"},
+]
+ipython-genutils = [
+ {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"},
+ {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"},
+]
+ipywidgets = [
+ {file = "ipywidgets-7.6.3-py2.py3-none-any.whl", hash = "sha256:e6513cfdaf5878de30f32d57f6dc2474da395a2a2991b94d487406c0ab7f55ca"},
+ {file = "ipywidgets-7.6.3.tar.gz", hash = "sha256:9f1a43e620530f9e570e4a493677d25f08310118d315b00e25a18f12913c41f0"},
+]
+jedi = [
+ {file = "jedi-0.18.0-py2.py3-none-any.whl", hash = "sha256:18456d83f65f400ab0c2d3319e48520420ef43b23a086fdc05dff34132f0fb93"},
+ {file = "jedi-0.18.0.tar.gz", hash = "sha256:92550a404bad8afed881a137ec9a461fed49eca661414be45059329614ed0707"},
+]
+jinja2 = [
+ {file = "Jinja2-3.0.1-py3-none-any.whl", hash = "sha256:1f06f2da51e7b56b8f238affdd6b4e2c61e39598a378cc49345bc1bd42a978a4"},
+ {file = "Jinja2-3.0.1.tar.gz", hash = "sha256:703f484b47a6af502e743c9122595cc812b0271f661722403114f71a79d0f5a4"},
+]
+jsonschema = [
+ {file = "jsonschema-3.2.0-py2.py3-none-any.whl", hash = "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163"},
+ {file = "jsonschema-3.2.0.tar.gz", hash = "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a"},
+]
+jupyter = [
+ {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"},
+ {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"},
+ {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"},
+]
+jupyter-client = [
+ {file = "jupyter_client-6.2.0-py3-none-any.whl", hash = "sha256:9715152067e3f7ea3b56f341c9a0f9715c8c7cc316ee0eb13c3c84f5ca0065f5"},
+ {file = "jupyter_client-6.2.0.tar.gz", hash = "sha256:e2ab61d79fbf8b56734a4c2499f19830fbd7f6fefb3e87868ef0545cb3c17eb9"},
+]
+jupyter-console = [
+ {file = "jupyter_console-6.4.0-py3-none-any.whl", hash = "sha256:7799c4ea951e0e96ba8260575423cb323ea5a03fcf5503560fa3e15748869e27"},
+ {file = "jupyter_console-6.4.0.tar.gz", hash = "sha256:242248e1685039cd8bff2c2ecb7ce6c1546eb50ee3b08519729e6e881aec19c7"},
+]
+jupyter-core = [
+ {file = "jupyter_core-4.7.1-py3-none-any.whl", hash = "sha256:8c6c0cac5c1b563622ad49321d5ec47017bd18b94facb381c6973a0486395f8e"},
+ {file = "jupyter_core-4.7.1.tar.gz", hash = "sha256:79025cb3225efcd36847d0840f3fc672c0abd7afd0de83ba8a1d3837619122b4"},
+]
+jupyterlab-pygments = [
+ {file = "jupyterlab_pygments-0.1.2-py2.py3-none-any.whl", hash = "sha256:abfb880fd1561987efaefcb2d2ac75145d2a5d0139b1876d5be806e32f630008"},
+ {file = "jupyterlab_pygments-0.1.2.tar.gz", hash = "sha256:cfcda0873626150932f438eccf0f8bf22bfa92345b814890ab360d666b254146"},
+]
+jupyterlab-widgets = [
+ {file = "jupyterlab_widgets-1.0.0-py3-none-any.whl", hash = "sha256:caeaf3e6103180e654e7d8d2b81b7d645e59e432487c1d35a41d6d3ee56b3fef"},
+ {file = "jupyterlab_widgets-1.0.0.tar.gz", hash = "sha256:5c1a29a84d3069208cb506b10609175b249b6486d6b1cbae8fcde2a11584fb78"},
+]
+kiwisolver = [
+ {file = "kiwisolver-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:fd34fbbfbc40628200730bc1febe30631347103fc8d3d4fa012c21ab9c11eca9"},
+ {file = "kiwisolver-1.3.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:d3155d828dec1d43283bd24d3d3e0d9c7c350cdfcc0bd06c0ad1209c1bbc36d0"},
+ {file = "kiwisolver-1.3.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:5a7a7dbff17e66fac9142ae2ecafb719393aaee6a3768c9de2fd425c63b53e21"},
+ {file = "kiwisolver-1.3.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:f8d6f8db88049a699817fd9178782867bf22283e3813064302ac59f61d95be05"},
+ {file = "kiwisolver-1.3.1-cp36-cp36m-manylinux2014_ppc64le.whl", hash = "sha256:5f6ccd3dd0b9739edcf407514016108e2280769c73a85b9e59aa390046dbf08b"},
+ {file = "kiwisolver-1.3.1-cp36-cp36m-win32.whl", hash = "sha256:225e2e18f271e0ed8157d7f4518ffbf99b9450fca398d561eb5c4a87d0986dd9"},
+ {file = "kiwisolver-1.3.1-cp36-cp36m-win_amd64.whl", hash = "sha256:cf8b574c7b9aa060c62116d4181f3a1a4e821b2ec5cbfe3775809474113748d4"},
+ {file = "kiwisolver-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:232c9e11fd7ac3a470d65cd67e4359eee155ec57e822e5220322d7b2ac84fbf0"},
+ {file = "kiwisolver-1.3.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:b38694dcdac990a743aa654037ff1188c7a9801ac3ccc548d3341014bc5ca278"},
+ {file = "kiwisolver-1.3.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:ca3820eb7f7faf7f0aa88de0e54681bddcb46e485beb844fcecbcd1c8bd01689"},
+ {file = "kiwisolver-1.3.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:c8fd0f1ae9d92b42854b2979024d7597685ce4ada367172ed7c09edf2cef9cb8"},
+ {file = "kiwisolver-1.3.1-cp37-cp37m-manylinux2014_ppc64le.whl", hash = "sha256:1e1bc12fb773a7b2ffdeb8380609f4f8064777877b2225dec3da711b421fda31"},
+ {file = "kiwisolver-1.3.1-cp37-cp37m-win32.whl", hash = "sha256:72c99e39d005b793fb7d3d4e660aed6b6281b502e8c1eaf8ee8346023c8e03bc"},
+ {file = "kiwisolver-1.3.1-cp37-cp37m-win_amd64.whl", hash = "sha256:8be8d84b7d4f2ba4ffff3665bcd0211318aa632395a1a41553250484a871d454"},
+ {file = "kiwisolver-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:31dfd2ac56edc0ff9ac295193eeaea1c0c923c0355bf948fbd99ed6018010b72"},
+ {file = "kiwisolver-1.3.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:563c649cfdef27d081c84e72a03b48ea9408c16657500c312575ae9d9f7bc1c3"},
+ {file = "kiwisolver-1.3.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:78751b33595f7f9511952e7e60ce858c6d64db2e062afb325985ddbd34b5c131"},
+ {file = "kiwisolver-1.3.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a357fd4f15ee49b4a98b44ec23a34a95f1e00292a139d6015c11f55774ef10de"},
+ {file = "kiwisolver-1.3.1-cp38-cp38-manylinux2014_ppc64le.whl", hash = "sha256:5989db3b3b34b76c09253deeaf7fbc2707616f130e166996606c284395da3f18"},
+ {file = "kiwisolver-1.3.1-cp38-cp38-win32.whl", hash = "sha256:c08e95114951dc2090c4a630c2385bef681cacf12636fb0241accdc6b303fd81"},
+ {file = "kiwisolver-1.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:44a62e24d9b01ba94ae7a4a6c3fb215dc4af1dde817e7498d901e229aaf50e4e"},
+ {file = "kiwisolver-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:50af681a36b2a1dee1d3c169ade9fdc59207d3c31e522519181e12f1b3ba7000"},
+ {file = "kiwisolver-1.3.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:a53d27d0c2a0ebd07e395e56a1fbdf75ffedc4a05943daf472af163413ce9598"},
+ {file = "kiwisolver-1.3.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:834ee27348c4aefc20b479335fd422a2c69db55f7d9ab61721ac8cd83eb78882"},
+ {file = "kiwisolver-1.3.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:5c3e6455341008a054cccee8c5d24481bcfe1acdbc9add30aa95798e95c65621"},
+ {file = "kiwisolver-1.3.1-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:acef3d59d47dd85ecf909c359d0fd2c81ed33bdff70216d3956b463e12c38a54"},
+ {file = "kiwisolver-1.3.1-cp39-cp39-win32.whl", hash = "sha256:c5518d51a0735b1e6cee1fdce66359f8d2b59c3ca85dc2b0813a8aa86818a030"},
+ {file = "kiwisolver-1.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:b9edd0110a77fc321ab090aaa1cfcaba1d8499850a12848b81be2222eab648f6"},
+ {file = "kiwisolver-1.3.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0cd53f403202159b44528498de18f9285b04482bab2a6fc3f5dd8dbb9352e30d"},
+ {file = "kiwisolver-1.3.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:33449715e0101e4d34f64990352bce4095c8bf13bed1b390773fc0a7295967b3"},
+ {file = "kiwisolver-1.3.1-pp36-pypy36_pp73-win32.whl", hash = "sha256:401a2e9afa8588589775fe34fc22d918ae839aaaf0c0e96441c0fdbce6d8ebe6"},
+ {file = "kiwisolver-1.3.1.tar.gz", hash = "sha256:950a199911a8d94683a6b10321f9345d5a3a8433ec58b217ace979e18f16e248"},
+]
+markupsafe = [
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f9081981fe268bd86831e5c75f7de206ef275defcb82bc70740ae6dc507aee51"},
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:0955295dd5eec6cb6cc2fe1698f4c6d84af2e92de33fbcac4111913cd100a6ff"},
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:0446679737af14f45767963a1a9ef7620189912317d095f2d9ffa183a4d25d2b"},
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:f826e31d18b516f653fe296d967d700fddad5901ae07c622bb3705955e1faa94"},
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:fa130dd50c57d53368c9d59395cb5526eda596d3ffe36666cd81a44d56e48872"},
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:905fec760bd2fa1388bb5b489ee8ee5f7291d692638ea5f67982d968366bef9f"},
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-win32.whl", hash = "sha256:6c4ca60fa24e85fe25b912b01e62cb969d69a23a5d5867682dd3e80b5b02581d"},
+ {file = "MarkupSafe-2.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:b2f4bf27480f5e5e8ce285a8c8fd176c0b03e93dcc6646477d4630e83440c6a9"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0717a7390a68be14b8c793ba258e075c6f4ca819f15edfc2a3a027c823718567"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6557b31b5e2c9ddf0de32a691f2312a32f77cd7681d8af66c2692efdbef84c18"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:49e3ceeabbfb9d66c3aef5af3a60cc43b85c33df25ce03d0031a608b0a8b2e3f"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:d7f9850398e85aba693bb640262d3611788b1f29a79f0c93c565694658f4071f"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:6a7fae0dd14cf60ad5ff42baa2e95727c3d81ded453457771d02b7d2b3f9c0c2"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:b7f2d075102dc8c794cbde1947378051c4e5180d52d276987b8d28a3bd58c17d"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-win32.whl", hash = "sha256:a30e67a65b53ea0a5e62fe23682cfe22712e01f453b95233b25502f7c61cb415"},
+ {file = "MarkupSafe-2.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:611d1ad9a4288cf3e3c16014564df047fe08410e628f89805e475368bd304914"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:be98f628055368795d818ebf93da628541e10b75b41c559fdf36d104c5787066"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:1d609f577dc6e1aa17d746f8bd3c31aa4d258f4070d61b2aa5c4166c1539de35"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:7d91275b0245b1da4d4cfa07e0faedd5b0812efc15b702576d103293e252af1b"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:01a9b8ea66f1658938f65b93a85ebe8bc016e6769611be228d797c9d998dd298"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:47ab1e7b91c098ab893b828deafa1203de86d0bc6ab587b160f78fe6c4011f75"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:97383d78eb34da7e1fa37dd273c20ad4320929af65d156e35a5e2d89566d9dfb"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-win32.whl", hash = "sha256:023cb26ec21ece8dc3907c0e8320058b2e0cb3c55cf9564da612bc325bed5e64"},
+ {file = "MarkupSafe-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:984d76483eb32f1bcb536dc27e4ad56bba4baa70be32fa87152832cdd9db0833"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2ef54abee730b502252bcdf31b10dacb0a416229b72c18b19e24a4509f273d26"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3c112550557578c26af18a1ccc9e090bfe03832ae994343cfdacd287db6a6ae7"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:53edb4da6925ad13c07b6d26c2a852bd81e364f95301c66e930ab2aef5b5ddd8"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:f5653a225f31e113b152e56f154ccbe59eeb1c7487b39b9d9f9cdb58e6c79dc5"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:4efca8f86c54b22348a5467704e3fec767b2db12fc39c6d963168ab1d3fc9135"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:ab3ef638ace319fa26553db0624c4699e31a28bb2a835c5faca8f8acf6a5a902"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:f8ba0e8349a38d3001fae7eadded3f6606f0da5d748ee53cc1dab1d6527b9509"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-win32.whl", hash = "sha256:10f82115e21dc0dfec9ab5c0223652f7197feb168c940f3ef61563fc2d6beb74"},
+ {file = "MarkupSafe-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:693ce3f9e70a6cf7d2fb9e6c9d8b204b6b39897a2c4a1aa65728d5ac97dcc1d8"},
+ {file = "MarkupSafe-2.0.1.tar.gz", hash = "sha256:594c67807fb16238b30c44bdf74f36c02cdf22d1c8cda91ef8a0ed8dabf5620a"},
+]
+matplotlib = [
+ {file = "matplotlib-3.4.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c541ee5a3287efe066bbe358320853cf4916bc14c00c38f8f3d8d75275a405a9"},
+ {file = "matplotlib-3.4.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:3a5c18dbd2c7c366da26a4ad1462fe3e03a577b39e3b503bbcf482b9cdac093c"},
+ {file = "matplotlib-3.4.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a9d8cb5329df13e0cdaa14b3b43f47b5e593ec637f13f14db75bb16e46178b05"},
+ {file = "matplotlib-3.4.2-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:7ad19f3fb6145b9eb41c08e7cbb9f8e10b91291396bee21e9ce761bb78df63ec"},
+ {file = "matplotlib-3.4.2-cp37-cp37m-win32.whl", hash = "sha256:7a58f3d8fe8fac3be522c79d921c9b86e090a59637cb88e3bc51298d7a2c862a"},
+ {file = "matplotlib-3.4.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6382bc6e2d7e481bcd977eb131c31dee96e0fb4f9177d15ec6fb976d3b9ace1a"},
+ {file = "matplotlib-3.4.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6a6a44f27aabe720ec4fd485061e8a35784c2b9ffa6363ad546316dfc9cea04e"},
+ {file = "matplotlib-3.4.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:1c1779f7ab7d8bdb7d4c605e6ffaa0614b3e80f1e3c8ccf7b9269a22dbc5986b"},
+ {file = "matplotlib-3.4.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:5826f56055b9b1c80fef82e326097e34dc4af8c7249226b7dd63095a686177d1"},
+ {file = "matplotlib-3.4.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0bea5ec5c28d49020e5d7923c2725b837e60bc8be99d3164af410eb4b4c827da"},
+ {file = "matplotlib-3.4.2-cp38-cp38-win32.whl", hash = "sha256:6475d0209024a77f869163ec3657c47fed35d9b6ed8bccba8aa0f0099fbbdaa8"},
+ {file = "matplotlib-3.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:21b31057bbc5e75b08e70a43cefc4c0b2c2f1b1a850f4a0f7af044eb4163086c"},
+ {file = "matplotlib-3.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b26535b9de85326e6958cdef720ecd10bcf74a3f4371bf9a7e5b2e659c17e153"},
+ {file = "matplotlib-3.4.2-cp39-cp39-manylinux1_i686.whl", hash = "sha256:32fa638cc10886885d1ca3d409d4473d6a22f7ceecd11322150961a70fab66dd"},
+ {file = "matplotlib-3.4.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:956c8849b134b4a343598305a3ca1bdd3094f01f5efc8afccdebeffe6b315247"},
+ {file = "matplotlib-3.4.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:85f191bb03cb1a7b04b5c2cca4792bef94df06ef473bc49e2818105671766fee"},
+ {file = "matplotlib-3.4.2-cp39-cp39-win32.whl", hash = "sha256:b1d5a2cedf5de05567c441b3a8c2651fbde56df08b82640e7f06c8cd91e201f6"},
+ {file = "matplotlib-3.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:df815378a754a7edd4559f8c51fc7064f779a74013644a7f5ac7a0c31f875866"},
+ {file = "matplotlib-3.4.2.tar.gz", hash = "sha256:d8d994cefdff9aaba45166eb3de4f5211adb4accac85cbf97137e98f26ea0219"},
+]
+matplotlib-inline = [
+ {file = "matplotlib-inline-0.1.2.tar.gz", hash = "sha256:f41d5ff73c9f5385775d5c0bc13b424535c8402fe70ea8210f93e11f3683993e"},
+ {file = "matplotlib_inline-0.1.2-py3-none-any.whl", hash = "sha256:5cf1176f554abb4fa98cb362aa2b55c500147e4bdbb07e3fda359143e1da0811"},
+]
+mistune = [
+ {file = "mistune-0.8.4-py2.py3-none-any.whl", hash = "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"},
+ {file = "mistune-0.8.4.tar.gz", hash = "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e"},
+]
+nbclient = [
+ {file = "nbclient-0.5.3-py3-none-any.whl", hash = "sha256:e79437364a2376892b3f46bedbf9b444e5396cfb1bc366a472c37b48e9551500"},
+ {file = "nbclient-0.5.3.tar.gz", hash = "sha256:db17271330c68c8c88d46d72349e24c147bb6f34ec82d8481a8f025c4d26589c"},
+]
+nbconvert = [
+ {file = "nbconvert-6.1.0-py3-none-any.whl", hash = "sha256:37cd92ff2ae6a268e62075ff8b16129e0be4939c4dfcee53dc77cc8a7e06c684"},
+ {file = "nbconvert-6.1.0.tar.gz", hash = "sha256:d22a8ff202644d31db254d24d52c3a96c82156623fcd7c7f987bba2612303ec9"},
+]
+nbformat = [
+ {file = "nbformat-5.1.3-py3-none-any.whl", hash = "sha256:eb8447edd7127d043361bc17f2f5a807626bc8e878c7709a1c647abda28a9171"},
+ {file = "nbformat-5.1.3.tar.gz", hash = "sha256:b516788ad70771c6250977c1374fcca6edebe6126fd2adb5a69aa5c2356fd1c8"},
+]
+nest-asyncio = [
+ {file = "nest_asyncio-1.5.1-py3-none-any.whl", hash = "sha256:76d6e972265063fe92a90b9cc4fb82616e07d586b346ed9d2c89a4187acea39c"},
+ {file = "nest_asyncio-1.5.1.tar.gz", hash = "sha256:afc5a1c515210a23c461932765691ad39e8eba6551c055ac8d5546e69250d0aa"},
+]
+notebook = [
+ {file = "notebook-6.4.0-py3-none-any.whl", hash = "sha256:f7f0a71a999c7967d9418272ae4c3378a220bd28330fbfb49860e46cf8a5838a"},
+ {file = "notebook-6.4.0.tar.gz", hash = "sha256:9c4625e2a2aa49d6eae4ce20cbc3d8976db19267e32d2a304880e0c10bf8aef9"},
+]
+numpy = [
+ {file = "numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:38e8648f9449a549a7dfe8d8755a5979b45b3538520d1e735637ef28e8c2dc50"},
+ {file = "numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fd7d7409fa643a91d0a05c7554dd68aa9c9bb16e186f6ccfe40d6e003156e33a"},
+ {file = "numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a75b4498b1e93d8b700282dc8e655b8bd559c0904b3910b144646dbbbc03e062"},
+ {file = "numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1412aa0aec3e00bc23fbb8664d76552b4efde98fb71f60737c83efbac24112f1"},
+ {file = "numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e46ceaff65609b5399163de5893d8f2a82d3c77d5e56d976c8b5fb01faa6b671"},
+ {file = "numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:c6a2324085dd52f96498419ba95b5777e40b6bcbc20088fddb9e8cbb58885e8e"},
+ {file = "numpy-1.21.1-cp37-cp37m-win32.whl", hash = "sha256:73101b2a1fef16602696d133db402a7e7586654682244344b8329cdcbbb82172"},
+ {file = "numpy-1.21.1-cp37-cp37m-win_amd64.whl", hash = "sha256:7a708a79c9a9d26904d1cca8d383bf869edf6f8e7650d85dbc77b041e8c5a0f8"},
+ {file = "numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:95b995d0c413f5d0428b3f880e8fe1660ff9396dcd1f9eedbc311f37b5652e16"},
+ {file = "numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:635e6bd31c9fb3d475c8f44a089569070d10a9ef18ed13738b03049280281267"},
+ {file = "numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a3d5fb89bfe21be2ef47c0614b9c9c707b7362386c9a3ff1feae63e0267ccb6"},
+ {file = "numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8a326af80e86d0e9ce92bcc1e65c8ff88297de4fa14ee936cb2293d414c9ec63"},
+ {file = "numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:791492091744b0fe390a6ce85cc1bf5149968ac7d5f0477288f78c89b385d9af"},
+ {file = "numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0318c465786c1f63ac05d7c4dbcecd4d2d7e13f0959b01b534ea1e92202235c5"},
+ {file = "numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a513bd9c1551894ee3d31369f9b07460ef223694098cf27d399513415855b68"},
+ {file = "numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:91c6f5fc58df1e0a3cc0c3a717bb3308ff850abdaa6d2d802573ee2b11f674a8"},
+ {file = "numpy-1.21.1-cp38-cp38-win32.whl", hash = "sha256:978010b68e17150db8765355d1ccdd450f9fc916824e8c4e35ee620590e234cd"},
+ {file = "numpy-1.21.1-cp38-cp38-win_amd64.whl", hash = "sha256:9749a40a5b22333467f02fe11edc98f022133ee1bfa8ab99bda5e5437b831214"},
+ {file = "numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d7a4aeac3b94af92a9373d6e77b37691b86411f9745190d2c351f410ab3a791f"},
+ {file = "numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d9e7912a56108aba9b31df688a4c4f5cb0d9d3787386b87d504762b6754fbb1b"},
+ {file = "numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:25b40b98ebdd272bc3020935427a4530b7d60dfbe1ab9381a39147834e985eac"},
+ {file = "numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8a92c5aea763d14ba9d6475803fc7904bda7decc2a0a68153f587ad82941fec1"},
+ {file = "numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05a0f648eb28bae4bcb204e6fd14603de2908de982e761a2fc78efe0f19e96e1"},
+ {file = "numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f01f28075a92eede918b965e86e8f0ba7b7797a95aa8d35e1cc8821f5fc3ad6a"},
+ {file = "numpy-1.21.1-cp39-cp39-win32.whl", hash = "sha256:88c0b89ad1cc24a5efbb99ff9ab5db0f9a86e9cc50240177a571fbe9c2860ac2"},
+ {file = "numpy-1.21.1-cp39-cp39-win_amd64.whl", hash = "sha256:01721eefe70544d548425a07c80be8377096a54118070b8a62476866d5208e33"},
+ {file = "numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2d4d1de6e6fb3d28781c73fbde702ac97f03d79e4ffd6598b880b2d95d62ead4"},
+ {file = "numpy-1.21.1.zip", hash = "sha256:dff4af63638afcc57a3dfb9e4b26d434a7a602d225b42d746ea7fe2edf1342fd"},
+]
+packaging = [
+ {file = "packaging-21.0-py3-none-any.whl", hash = "sha256:c86254f9220d55e31cc94d69bade760f0847da8000def4dfe1c6b872fd14ff14"},
+ {file = "packaging-21.0.tar.gz", hash = "sha256:7dc96269f53a4ccec5c0670940a4281106dd0bb343f47b7471f779df49c2fbe7"},
+]
+pandocfilters = [
+ {file = "pandocfilters-1.4.3.tar.gz", hash = "sha256:bc63fbb50534b4b1f8ebe1860889289e8af94a23bff7445259592df25a3906eb"},
+]
+parso = [
+ {file = "parso-0.8.2-py2.py3-none-any.whl", hash = "sha256:a8c4922db71e4fdb90e0d0bc6e50f9b273d3397925e5e60a717e719201778d22"},
+ {file = "parso-0.8.2.tar.gz", hash = "sha256:12b83492c6239ce32ff5eed6d3639d6a536170723c6f3f1506869f1ace413398"},
+]
+pexpect = [
+ {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"},
+ {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"},
+]
+pickleshare = [
+ {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"},
+ {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"},
+]
+pillow = [
+ {file = "Pillow-8.3.1-1-cp36-cp36m-win_amd64.whl", hash = "sha256:fd7eef578f5b2200d066db1b50c4aa66410786201669fb76d5238b007918fb24"},
+ {file = "Pillow-8.3.1-1-cp37-cp37m-win_amd64.whl", hash = "sha256:75e09042a3b39e0ea61ce37e941221313d51a9c26b8e54e12b3ececccb71718a"},
+ {file = "Pillow-8.3.1-1-cp38-cp38-win_amd64.whl", hash = "sha256:c0e0550a404c69aab1e04ae89cca3e2a042b56ab043f7f729d984bf73ed2a093"},
+ {file = "Pillow-8.3.1-1-cp39-cp39-win_amd64.whl", hash = "sha256:479ab11cbd69612acefa8286481f65c5dece2002ffaa4f9db62682379ca3bb77"},
+ {file = "Pillow-8.3.1-1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:f156d6ecfc747ee111c167f8faf5f4953761b5e66e91a4e6767e548d0f80129c"},
+ {file = "Pillow-8.3.1-cp36-cp36m-macosx_10_10_x86_64.whl", hash = "sha256:196560dba4da7a72c5e7085fccc5938ab4075fd37fe8b5468869724109812edd"},
+ {file = "Pillow-8.3.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29c9569049d04aaacd690573a0398dbd8e0bf0255684fee512b413c2142ab723"},
+ {file = "Pillow-8.3.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c088a000dfdd88c184cc7271bfac8c5b82d9efa8637cd2b68183771e3cf56f04"},
+ {file = "Pillow-8.3.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:fc214a6b75d2e0ea7745488da7da3c381f41790812988c7a92345978414fad37"},
+ {file = "Pillow-8.3.1-cp36-cp36m-win32.whl", hash = "sha256:a17ca41f45cf78c2216ebfab03add7cc350c305c38ff34ef4eef66b7d76c5229"},
+ {file = "Pillow-8.3.1-cp36-cp36m-win_amd64.whl", hash = "sha256:67b3666b544b953a2777cb3f5a922e991be73ab32635666ee72e05876b8a92de"},
+ {file = "Pillow-8.3.1-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:ff04c373477723430dce2e9d024c708a047d44cf17166bf16e604b379bf0ca14"},
+ {file = "Pillow-8.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9364c81b252d8348e9cc0cb63e856b8f7c1b340caba6ee7a7a65c968312f7dab"},
+ {file = "Pillow-8.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a2f381932dca2cf775811a008aa3027671ace723b7a38838045b1aee8669fdcf"},
+ {file = "Pillow-8.3.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d0da39795049a9afcaadec532e7b669b5ebbb2a9134576ebcc15dd5bdae33cc0"},
+ {file = "Pillow-8.3.1-cp37-cp37m-win32.whl", hash = "sha256:2b6dfa068a8b6137da34a4936f5a816aba0ecc967af2feeb32c4393ddd671cba"},
+ {file = "Pillow-8.3.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a4eef1ff2d62676deabf076f963eda4da34b51bc0517c70239fafed1d5b51500"},
+ {file = "Pillow-8.3.1-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:660a87085925c61a0dcc80efb967512ac34dbb256ff7dd2b9b4ee8dbdab58cf4"},
+ {file = "Pillow-8.3.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:15a2808e269a1cf2131930183dcc0419bc77bb73eb54285dde2706ac9939fa8e"},
+ {file = "Pillow-8.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:969cc558cca859cadf24f890fc009e1bce7d7d0386ba7c0478641a60199adf79"},
+ {file = "Pillow-8.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2ee77c14a0299d0541d26f3d8500bb57e081233e3fa915fa35abd02c51fa7fae"},
+ {file = "Pillow-8.3.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:c11003197f908878164f0e6da15fce22373ac3fc320cda8c9d16e6bba105b844"},
+ {file = "Pillow-8.3.1-cp38-cp38-win32.whl", hash = "sha256:3f08bd8d785204149b5b33e3b5f0ebbfe2190ea58d1a051c578e29e39bfd2367"},
+ {file = "Pillow-8.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:70af7d222df0ff81a2da601fab42decb009dc721545ed78549cb96e3a1c5f0c8"},
+ {file = "Pillow-8.3.1-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:37730f6e68bdc6a3f02d2079c34c532330d206429f3cee651aab6b66839a9f0e"},
+ {file = "Pillow-8.3.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4bc3c7ef940eeb200ca65bd83005eb3aae8083d47e8fcbf5f0943baa50726856"},
+ {file = "Pillow-8.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c35d09db702f4185ba22bb33ef1751ad49c266534339a5cebeb5159d364f6f82"},
+ {file = "Pillow-8.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0b2efa07f69dc395d95bb9ef3299f4ca29bcb2157dc615bae0b42c3c20668ffc"},
+ {file = "Pillow-8.3.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:cc866706d56bd3a7dbf8bac8660c6f6462f2f2b8a49add2ba617bc0c54473d83"},
+ {file = "Pillow-8.3.1-cp39-cp39-win32.whl", hash = "sha256:9a211b663cf2314edbdb4cf897beeb5c9ee3810d1d53f0e423f06d6ebbf9cd5d"},
+ {file = "Pillow-8.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:c2a5ff58751670292b406b9f06e07ed1446a4b13ffced6b6cab75b857485cbc8"},
+ {file = "Pillow-8.3.1-pp36-pypy36_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c379425c2707078dfb6bfad2430728831d399dc95a7deeb92015eb4c92345eaf"},
+ {file = "Pillow-8.3.1-pp36-pypy36_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:114f816e4f73f9ec06997b2fde81a92cbf0777c9e8f462005550eed6bae57e63"},
+ {file = "Pillow-8.3.1-pp36-pypy36_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8960a8a9f4598974e4c2aeb1bff9bdd5db03ee65fd1fce8adf3223721aa2a636"},
+ {file = "Pillow-8.3.1-pp37-pypy37_pp73-macosx_10_10_x86_64.whl", hash = "sha256:147bd9e71fb9dcf08357b4d530b5167941e222a6fd21f869c7911bac40b9994d"},
+ {file = "Pillow-8.3.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1fd5066cd343b5db88c048d971994e56b296868766e461b82fa4e22498f34d77"},
+ {file = "Pillow-8.3.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f4ebde71785f8bceb39dcd1e7f06bcc5d5c3cf48b9f69ab52636309387b097c8"},
+ {file = "Pillow-8.3.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:1c03e24be975e2afe70dfc5da6f187eea0b49a68bb2b69db0f30a61b7031cee4"},
+ {file = "Pillow-8.3.1.tar.gz", hash = "sha256:2cac53839bfc5cece8fdbe7f084d5e3ee61e1303cccc86511d351adcb9e2c792"},
+]
+prometheus-client = [
+ {file = "prometheus_client-0.11.0-py2.py3-none-any.whl", hash = "sha256:b014bc76815eb1399da8ce5fc84b7717a3e63652b0c0f8804092c9363acab1b2"},
+ {file = "prometheus_client-0.11.0.tar.gz", hash = "sha256:3a8baade6cb80bcfe43297e33e7623f3118d660d41387593758e2fb1ea173a86"},
+]
+prompt-toolkit = [
+ {file = "prompt_toolkit-3.0.19-py3-none-any.whl", hash = "sha256:7089d8d2938043508aa9420ec18ce0922885304cddae87fb96eebca942299f88"},
+ {file = "prompt_toolkit-3.0.19.tar.gz", hash = "sha256:08360ee3a3148bdb5163621709ee322ec34fc4375099afa4bbf751e9b7b7fa4f"},
+]
+ptyprocess = [
+ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"},
+ {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"},
+]
+py = [
+ {file = "py-1.10.0-py2.py3-none-any.whl", hash = "sha256:3b80836aa6d1feeaa108e046da6423ab8f6ceda6468545ae8d02d9d58d18818a"},
+ {file = "py-1.10.0.tar.gz", hash = "sha256:21b81bda15b66ef5e1a777a21c4dcd9c20ad3efd0b3f817e7a809035269e1bd3"},
+]
+pycparser = [
+ {file = "pycparser-2.20-py2.py3-none-any.whl", hash = "sha256:7582ad22678f0fcd81102833f60ef8d0e57288b6b5fb00323d101be910e35705"},
+ {file = "pycparser-2.20.tar.gz", hash = "sha256:2d475327684562c3a96cc71adf7dc8c4f0565175cf86b6d7a404ff4c771f15f0"},
+]
+pygments = [
+ {file = "Pygments-2.9.0-py3-none-any.whl", hash = "sha256:d66e804411278594d764fc69ec36ec13d9ae9147193a1740cd34d272ca383b8e"},
+ {file = "Pygments-2.9.0.tar.gz", hash = "sha256:a18f47b506a429f6f4b9df81bb02beab9ca21d0a5fee38ed15aef65f0545519f"},
+]
+pyparsing = [
+ {file = "pyparsing-2.4.7-py2.py3-none-any.whl", hash = "sha256:ef9d7589ef3c200abe66653d3f1ab1033c3c419ae9b9bdb1240a85b024efc88b"},
+ {file = "pyparsing-2.4.7.tar.gz", hash = "sha256:c203ec8783bf771a155b207279b9bccb8dea02d8f0c9e5f8ead507bc3246ecc1"},
+]
+pyrsistent = [
+ {file = "pyrsistent-0.18.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f4c8cabb46ff8e5d61f56a037974228e978f26bfefce4f61a4b1ac0ba7a2ab72"},
+ {file = "pyrsistent-0.18.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:da6e5e818d18459fa46fac0a4a4e543507fe1110e808101277c5a2b5bab0cd2d"},
+ {file = "pyrsistent-0.18.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:5e4395bbf841693eaebaa5bb5c8f5cdbb1d139e07c975c682ec4e4f8126e03d2"},
+ {file = "pyrsistent-0.18.0-cp36-cp36m-win32.whl", hash = "sha256:527be2bfa8dc80f6f8ddd65242ba476a6c4fb4e3aedbf281dfbac1b1ed4165b1"},
+ {file = "pyrsistent-0.18.0-cp36-cp36m-win_amd64.whl", hash = "sha256:2aaf19dc8ce517a8653746d98e962ef480ff34b6bc563fc067be6401ffb457c7"},
+ {file = "pyrsistent-0.18.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:58a70d93fb79dc585b21f9d72487b929a6fe58da0754fa4cb9f279bb92369396"},
+ {file = "pyrsistent-0.18.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4916c10896721e472ee12c95cdc2891ce5890898d2f9907b1b4ae0f53588b710"},
+ {file = "pyrsistent-0.18.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:73ff61b1411e3fb0ba144b8f08d6749749775fe89688093e1efef9839d2dcc35"},
+ {file = "pyrsistent-0.18.0-cp37-cp37m-win32.whl", hash = "sha256:b29b869cf58412ca5738d23691e96d8aff535e17390128a1a52717c9a109da4f"},
+ {file = "pyrsistent-0.18.0-cp37-cp37m-win_amd64.whl", hash = "sha256:097b96f129dd36a8c9e33594e7ebb151b1515eb52cceb08474c10a5479e799f2"},
+ {file = "pyrsistent-0.18.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:772e94c2c6864f2cd2ffbe58bb3bdefbe2a32afa0acb1a77e472aac831f83427"},
+ {file = "pyrsistent-0.18.0-cp38-cp38-manylinux1_i686.whl", hash = "sha256:c1a9ff320fa699337e05edcaae79ef8c2880b52720bc031b219e5b5008ebbdef"},
+ {file = "pyrsistent-0.18.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd3caef37a415fd0dae6148a1b6957a8c5f275a62cca02e18474608cb263640c"},
+ {file = "pyrsistent-0.18.0-cp38-cp38-win32.whl", hash = "sha256:e79d94ca58fcafef6395f6352383fa1a76922268fa02caa2272fff501c2fdc78"},
+ {file = "pyrsistent-0.18.0-cp38-cp38-win_amd64.whl", hash = "sha256:a0c772d791c38bbc77be659af29bb14c38ced151433592e326361610250c605b"},
+ {file = "pyrsistent-0.18.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d5ec194c9c573aafaceebf05fc400656722793dac57f254cd4741f3c27ae57b4"},
+ {file = "pyrsistent-0.18.0-cp39-cp39-manylinux1_i686.whl", hash = "sha256:6b5eed00e597b5b5773b4ca30bd48a5774ef1e96f2a45d105db5b4ebb4bca680"},
+ {file = "pyrsistent-0.18.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:48578680353f41dca1ca3dc48629fb77dfc745128b56fc01096b2530c13fd426"},
+ {file = "pyrsistent-0.18.0-cp39-cp39-win32.whl", hash = "sha256:f3ef98d7b76da5eb19c37fda834d50262ff9167c65658d1d8f974d2e4d90676b"},
+ {file = "pyrsistent-0.18.0-cp39-cp39-win_amd64.whl", hash = "sha256:404e1f1d254d314d55adb8d87f4f465c8693d6f902f67eb6ef5b4526dc58e6ea"},
+ {file = "pyrsistent-0.18.0.tar.gz", hash = "sha256:773c781216f8c2900b42a7b638d5b517bb134ae1acbebe4d1e8f1f41ea60eb4b"},
+]
+python-dateutil = [
+ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
+ {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
+]
+pywin32 = [
+ {file = "pywin32-301-cp35-cp35m-win32.whl", hash = "sha256:93367c96e3a76dfe5003d8291ae16454ca7d84bb24d721e0b74a07610b7be4a7"},
+ {file = "pywin32-301-cp35-cp35m-win_amd64.whl", hash = "sha256:9635df6998a70282bd36e7ac2a5cef9ead1627b0a63b17c731312c7a0daebb72"},
+ {file = "pywin32-301-cp36-cp36m-win32.whl", hash = "sha256:c866f04a182a8cb9b7855de065113bbd2e40524f570db73ef1ee99ff0a5cc2f0"},
+ {file = "pywin32-301-cp36-cp36m-win_amd64.whl", hash = "sha256:dafa18e95bf2a92f298fe9c582b0e205aca45c55f989937c52c454ce65b93c78"},
+ {file = "pywin32-301-cp37-cp37m-win32.whl", hash = "sha256:98f62a3f60aa64894a290fb7494bfa0bfa0a199e9e052e1ac293b2ad3cd2818b"},
+ {file = "pywin32-301-cp37-cp37m-win_amd64.whl", hash = "sha256:fb3b4933e0382ba49305cc6cd3fb18525df7fd96aa434de19ce0878133bf8e4a"},
+ {file = "pywin32-301-cp38-cp38-win32.whl", hash = "sha256:88981dd3cfb07432625b180f49bf4e179fb8cbb5704cd512e38dd63636af7a17"},
+ {file = "pywin32-301-cp38-cp38-win_amd64.whl", hash = "sha256:8c9d33968aa7fcddf44e47750e18f3d034c3e443a707688a008a2e52bbef7e96"},
+ {file = "pywin32-301-cp39-cp39-win32.whl", hash = "sha256:595d397df65f1b2e0beaca63a883ae6d8b6df1cdea85c16ae85f6d2e648133fe"},
+ {file = "pywin32-301-cp39-cp39-win_amd64.whl", hash = "sha256:87604a4087434cd814ad8973bd47d6524bd1fa9e971ce428e76b62a5e0860fdf"},
+]
+pywinpty = [
+ {file = "pywinpty-1.1.3-cp36-none-win_amd64.whl", hash = "sha256:81dc6f16d917b756e06fc58943e9750d59dbefc0ffd2086871d3fa5f33824446"},
+ {file = "pywinpty-1.1.3-cp37-none-win_amd64.whl", hash = "sha256:54557887e712ea3215ab0d9f089ed55a6cc8d826cd5d1e340d75300654c9663f"},
+ {file = "pywinpty-1.1.3-cp38-none-win_amd64.whl", hash = "sha256:f5e25197397f1fef0362caf3eb89f25441827a1e48bf15827c27021592fd2160"},
+ {file = "pywinpty-1.1.3-cp39-none-win_amd64.whl", hash = "sha256:b767276224f86b7560eb9173ba7956758cafcdfab97bb33837d42d2a0f1dbf67"},
+ {file = "pywinpty-1.1.3.tar.gz", hash = "sha256:3a1d57b338390333812a5eed31c93c7d8ba82b131078063703e731946d90c9f2"},
+]
+pyzmq = [
+ {file = "pyzmq-22.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4e9b9a2f6944acdaf57316436c1acdcb30b8df76726bcf570ad9342bc5001654"},
+ {file = "pyzmq-22.1.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:24fb5bb641f0b2aa25fc3832f4b6fc62430f14a7d328229fe994b2bcdc07c93a"},
+ {file = "pyzmq-22.1.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:c4674004ed64685a38bee222cd75afa769424ec603f9329f0dd4777138337f48"},
+ {file = "pyzmq-22.1.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:461ed80d741692d9457ab820b1cc057ba9c37c394e67b647b639f623c8b321f6"},
+ {file = "pyzmq-22.1.0-cp36-cp36m-win32.whl", hash = "sha256:de5806be66c9108e4dcdaced084e8ceae14100aa559e2d57b4f0cceb98c462de"},
+ {file = "pyzmq-22.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:a1c77796f395804d6002ff56a6a8168c1f98579896897ad7e35665a9b4a9eec5"},
+ {file = "pyzmq-22.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c6a81c9e6754465d09a87e3acd74d9bb1f0039b2d785c6899622f0afdb41d760"},
+ {file = "pyzmq-22.1.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:0f0f27eaab9ba7b92d73d71c51d1a04464a1da6097a252d007922103253d2313"},
+ {file = "pyzmq-22.1.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:4b8fb1b3174b56fd020e4b10232b1764e52cf7f3babcfb460c5253bdc48adad0"},
+ {file = "pyzmq-22.1.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:c8fff75af4c7af92dce9f81fa2a83ed009c3e1f33ee8b5222db2ef80b94e242e"},
+ {file = "pyzmq-22.1.0-cp37-cp37m-win32.whl", hash = "sha256:cb9f9fe1305ef69b65794655fd89b2209b11bff3e837de981820a8aa051ef914"},
+ {file = "pyzmq-22.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:bf80b2cec42d96117248b99d3c86e263a00469c840a778e6cb52d916f4fdf82c"},
+ {file = "pyzmq-22.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0ea7f4237991b0f745a4432c63e888450840bf8cb6c48b93fb7d62864f455529"},
+ {file = "pyzmq-22.1.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:12ffcf33db6ba7c0e5aaf901e65517f5e2b719367b80bcbfad692f546a297c7a"},
+ {file = "pyzmq-22.1.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d3ecfee2ee8d91ab2e08d2d8e89302c729b244e302bbc39c5b5dde42306ff003"},
+ {file = "pyzmq-22.1.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:68e2c4505992ab5b89f976f89a9135742b18d60068f761bef994a6805f1cae0c"},
+ {file = "pyzmq-22.1.0-cp38-cp38-win32.whl", hash = "sha256:285514956c08c7830da9d94e01f5414661a987831bd9f95e4d89cc8aaae8da10"},
+ {file = "pyzmq-22.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:d5e5be93e1714a59a535bbbc086b9e4fd2448c7547c5288548f6fd86353cad9e"},
+ {file = "pyzmq-22.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b2f707b52e09098a7770503e39294ca6e22ae5138ffa1dd36248b6436d23d78e"},
+ {file = "pyzmq-22.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:18dd2ca4540c476558099891c129e6f94109971d110b549db2a9775c817cedbd"},
+ {file = "pyzmq-22.1.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:c6d0c32532a0519997e1ded767e184ebb8543bdb351f8eff8570bd461e874efc"},
+ {file = "pyzmq-22.1.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:9ee48413a2d3cd867fd836737b4c89c24cea1150a37f4856d82d20293fa7519f"},
+ {file = "pyzmq-22.1.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4c4fe69c7dc0d13d4ae180ad650bb900854367f3349d3c16f0569f6c6447f698"},
+ {file = "pyzmq-22.1.0-cp39-cp39-win32.whl", hash = "sha256:fc712a90401bcbf3fa25747f189d6dcfccbecc32712701cad25c6355589dac57"},
+ {file = "pyzmq-22.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:68be16107f41563b9f67d93dff1c9f5587e0f76aa8fd91dc04c83d813bcdab1f"},
+ {file = "pyzmq-22.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl", hash = "sha256:734ea6565c71fc2d03d5b8c7d0d7519c96bb5567e0396da1b563c24a4ac66f0c"},
+ {file = "pyzmq-22.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:1389b615917d4196962a9b469e947ba862a8ec6f5094a47da5e7a8d404bc07a4"},
+ {file = "pyzmq-22.1.0-pp36-pypy36_pp73-win32.whl", hash = "sha256:41049cff5265e9cd75606aa2c90a76b9c80b98d8fe70ee08cf4af3cedb113358"},
+ {file = "pyzmq-22.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f49755684a963731479ff3035d45a8185545b4c9f662d368bd349c419839886d"},
+ {file = "pyzmq-22.1.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl", hash = "sha256:6355f81947e1fe6e7bb9e123aeb3067264391d3ebe8402709f824ef8673fa6f3"},
+ {file = "pyzmq-22.1.0-pp37-pypy37_pp73-win32.whl", hash = "sha256:089b974ec04d663b8685ac90e86bfe0e4da9d911ff3cf52cb765ff22408b102d"},
+ {file = "pyzmq-22.1.0.tar.gz", hash = "sha256:7040d6dd85ea65703904d023d7f57fab793d7ffee9ba9e14f3b897f34ff2415d"},
+]
+qtconsole = [
+ {file = "qtconsole-5.1.1-py3-none-any.whl", hash = "sha256:73994105b0369bb99f4164df4a131010f3c7b33a7b5169c37366358d8744675b"},
+ {file = "qtconsole-5.1.1.tar.gz", hash = "sha256:bbc34bca14f65535afcb401bc74b752bac955e5313001ba640383f7e5857dc49"},
+]
+qtpy = [
+ {file = "QtPy-1.9.0-py2.py3-none-any.whl", hash = "sha256:fa0b8363b363e89b2a6f49eddc162a04c0699ae95e109a6be3bb145a913190ea"},
+ {file = "QtPy-1.9.0.tar.gz", hash = "sha256:2db72c44b55d0fe1407be8fba35c838ad0d6d3bb81f23007886dc1fc0f459c8d"},
+]
+scipy = [
+ {file = "scipy-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:821e75f5c16cd7b0ab0ffe7eb9917e5af7b48c25306b4777287de8d792a5f7f3"},
+ {file = "scipy-1.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e7df79b42c3015058a5554bfeab6fd4c9906c46560c9ddebb5c652840f3e182"},
+ {file = "scipy-1.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0572256c10ddd058e3d315c555538671ddb2737f27eb56189bfbc3483391403f"},
+ {file = "scipy-1.7.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:b77ee5e3a9507622e7f98b16122242a3903397f98d1fe3bc269d904a9025e2bc"},
+ {file = "scipy-1.7.0-cp37-cp37m-win32.whl", hash = "sha256:53116abd5060a5b4a58489cf689bee259b779e6b7ecd4ce366e7147aa7c9626e"},
+ {file = "scipy-1.7.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e7b733d4d98e604109715e11f2ab9340eb45d53f803634ed730039070fc3bc11"},
+ {file = "scipy-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4ef3d4df8af40cb6f4d4eaf7b02780109ebabeec334cda26a7899ec9d8de9176"},
+ {file = "scipy-1.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd4399d4388ca0239a4825e312b3e61b60f743dd6daf49e5870837716502a92a"},
+ {file = "scipy-1.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:80df8af7039bce92fb4cd1ceb056258631b11b3c627384e2d29bb48d44c0cae7"},
+ {file = "scipy-1.7.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6130e22bf6ee506f7cddde7e0515296d97eb6c6c94f7ef5103c2b77aec5833a7"},
+ {file = "scipy-1.7.0-cp38-cp38-win32.whl", hash = "sha256:97ca4552ace1c313707058e774609af59644321e278c3a539322fab2fb09b943"},
+ {file = "scipy-1.7.0-cp38-cp38-win_amd64.whl", hash = "sha256:c5d012cb82cc1dcfa72609abaabb4a4ed8113e3e8ac43464508a418c146be57d"},
+ {file = "scipy-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5eb8f054eebb351af7490bbb57465ba9662c4e16e1786655c6c7ed530eb9a74e"},
+ {file = "scipy-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f4b89c223bd09460b52b669e2e642cab73c28855b540e6ed029692546a86f8d"},
+ {file = "scipy-1.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2e685fdbfa5b989af4338b29c408b9157ea6addec15d661104c437980c292be5"},
+ {file = "scipy-1.7.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3595c8b64970c9e5a3f137fa1a9eb64da417e78fb7991d0b098b18a00b776d88"},
+ {file = "scipy-1.7.0-cp39-cp39-win32.whl", hash = "sha256:5a983d3cebc27294897951a494cebd78af2eae37facf75d9e4ad4f1f62229860"},
+ {file = "scipy-1.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:aef6e922aea6f2e6bbb539b413c85210a9ee32757535b84204ebd22723e69704"},
+ {file = "scipy-1.7.0.tar.gz", hash = "sha256:998c5e6ea649489302de2c0bc026ed34284f531df89d2bdc8df3a0d44d165739"},
+]
+send2trash = [
+ {file = "Send2Trash-1.7.1-py3-none-any.whl", hash = "sha256:c20fee8c09378231b3907df9c215ec9766a84ee20053d99fbad854fe8bd42159"},
+ {file = "Send2Trash-1.7.1.tar.gz", hash = "sha256:17730aa0a33ab82ed6ca76be3bb25f0433d0014f1ccf63c979bab13a5b9db2b2"},
+]
+six = [
+ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
+ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
+]
+terminado = [
+ {file = "terminado-0.10.1-py3-none-any.whl", hash = "sha256:c89ace5bffd0e7268bdcf22526830eb787fd146ff9d78691a0528386f92b9ae3"},
+ {file = "terminado-0.10.1.tar.gz", hash = "sha256:89d5dac2f4e2b39758a0ff9a3b643707c95a020a6df36e70583b88297cd59cbe"},
+]
+testpath = [
+ {file = "testpath-0.5.0-py3-none-any.whl", hash = "sha256:8044f9a0bab6567fc644a3593164e872543bb44225b0e24846e2c89237937589"},
+ {file = "testpath-0.5.0.tar.gz", hash = "sha256:1acf7a0bcd3004ae8357409fc33751e16d37ccc650921da1094a86581ad1e417"},
+]
+tornado = [
+ {file = "tornado-6.1-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:d371e811d6b156d82aa5f9a4e08b58debf97c302a35714f6f45e35139c332e32"},
+ {file = "tornado-6.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:0d321a39c36e5f2c4ff12b4ed58d41390460f798422c4504e09eb5678e09998c"},
+ {file = "tornado-6.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9de9e5188a782be6b1ce866e8a51bc76a0fbaa0e16613823fc38e4fc2556ad05"},
+ {file = "tornado-6.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:61b32d06ae8a036a6607805e6720ef00a3c98207038444ba7fd3d169cd998910"},
+ {file = "tornado-6.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:3e63498f680547ed24d2c71e6497f24bca791aca2fe116dbc2bd0ac7f191691b"},
+ {file = "tornado-6.1-cp35-cp35m-manylinux2014_aarch64.whl", hash = "sha256:6c77c9937962577a6a76917845d06af6ab9197702a42e1346d8ae2e76b5e3675"},
+ {file = "tornado-6.1-cp35-cp35m-win32.whl", hash = "sha256:6286efab1ed6e74b7028327365cf7346b1d777d63ab30e21a0f4d5b275fc17d5"},
+ {file = "tornado-6.1-cp35-cp35m-win_amd64.whl", hash = "sha256:fa2ba70284fa42c2a5ecb35e322e68823288a4251f9ba9cc77be04ae15eada68"},
+ {file = "tornado-6.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:0a00ff4561e2929a2c37ce706cb8233b7907e0cdc22eab98888aca5dd3775feb"},
+ {file = "tornado-6.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:748290bf9112b581c525e6e6d3820621ff020ed95af6f17fedef416b27ed564c"},
+ {file = "tornado-6.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:e385b637ac3acaae8022e7e47dfa7b83d3620e432e3ecb9a3f7f58f150e50921"},
+ {file = "tornado-6.1-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:25ad220258349a12ae87ede08a7b04aca51237721f63b1808d39bdb4b2164558"},
+ {file = "tornado-6.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:65d98939f1a2e74b58839f8c4dab3b6b3c1ce84972ae712be02845e65391ac7c"},
+ {file = "tornado-6.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:e519d64089b0876c7b467274468709dadf11e41d65f63bba207e04217f47c085"},
+ {file = "tornado-6.1-cp36-cp36m-win32.whl", hash = "sha256:b87936fd2c317b6ee08a5741ea06b9d11a6074ef4cc42e031bc6403f82a32575"},
+ {file = "tornado-6.1-cp36-cp36m-win_amd64.whl", hash = "sha256:cc0ee35043162abbf717b7df924597ade8e5395e7b66d18270116f8745ceb795"},
+ {file = "tornado-6.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7250a3fa399f08ec9cb3f7b1b987955d17e044f1ade821b32e5f435130250d7f"},
+ {file = "tornado-6.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:ed3ad863b1b40cd1d4bd21e7498329ccaece75db5a5bf58cd3c9f130843e7102"},
+ {file = "tornado-6.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:dcef026f608f678c118779cd6591c8af6e9b4155c44e0d1bc0c87c036fb8c8c4"},
+ {file = "tornado-6.1-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:70dec29e8ac485dbf57481baee40781c63e381bebea080991893cd297742b8fd"},
+ {file = "tornado-6.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d3f7594930c423fd9f5d1a76bee85a2c36fd8b4b16921cae7e965f22575e9c01"},
+ {file = "tornado-6.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:3447475585bae2e77ecb832fc0300c3695516a47d46cefa0528181a34c5b9d3d"},
+ {file = "tornado-6.1-cp37-cp37m-win32.whl", hash = "sha256:e7229e60ac41a1202444497ddde70a48d33909e484f96eb0da9baf8dc68541df"},
+ {file = "tornado-6.1-cp37-cp37m-win_amd64.whl", hash = "sha256:cb5ec8eead331e3bb4ce8066cf06d2dfef1bfb1b2a73082dfe8a161301b76e37"},
+ {file = "tornado-6.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:20241b3cb4f425e971cb0a8e4ffc9b0a861530ae3c52f2b0434e6c1b57e9fd95"},
+ {file = "tornado-6.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:c77da1263aa361938476f04c4b6c8916001b90b2c2fdd92d8d535e1af48fba5a"},
+ {file = "tornado-6.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:fba85b6cd9c39be262fcd23865652920832b61583de2a2ca907dbd8e8a8c81e5"},
+ {file = "tornado-6.1-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:1e8225a1070cd8eec59a996c43229fe8f95689cb16e552d130b9793cb570a288"},
+ {file = "tornado-6.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d14d30e7f46a0476efb0deb5b61343b1526f73ebb5ed84f23dc794bdb88f9d9f"},
+ {file = "tornado-6.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8f959b26f2634a091bb42241c3ed8d3cedb506e7c27b8dd5c7b9f745318ddbb6"},
+ {file = "tornado-6.1-cp38-cp38-win32.whl", hash = "sha256:34ca2dac9e4d7afb0bed4677512e36a52f09caa6fded70b4e3e1c89dbd92c326"},
+ {file = "tornado-6.1-cp38-cp38-win_amd64.whl", hash = "sha256:6196a5c39286cc37c024cd78834fb9345e464525d8991c21e908cc046d1cc02c"},
+ {file = "tornado-6.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0ba29bafd8e7e22920567ce0d232c26d4d47c8b5cf4ed7b562b5db39fa199c5"},
+ {file = "tornado-6.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:33892118b165401f291070100d6d09359ca74addda679b60390b09f8ef325ffe"},
+ {file = "tornado-6.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7da13da6f985aab7f6f28debab00c67ff9cbacd588e8477034c0652ac141feea"},
+ {file = "tornado-6.1-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:e0791ac58d91ac58f694d8d2957884df8e4e2f6687cdf367ef7eb7497f79eaa2"},
+ {file = "tornado-6.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:66324e4e1beede9ac79e60f88de548da58b1f8ab4b2f1354d8375774f997e6c0"},
+ {file = "tornado-6.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:a48900ecea1cbb71b8c71c620dee15b62f85f7c14189bdeee54966fbd9a0c5bd"},
+ {file = "tornado-6.1-cp39-cp39-win32.whl", hash = "sha256:d3d20ea5782ba63ed13bc2b8c291a053c8d807a8fa927d941bd718468f7b950c"},
+ {file = "tornado-6.1-cp39-cp39-win_amd64.whl", hash = "sha256:548430be2740e327b3fe0201abe471f314741efcb0067ec4f2d7dcfb4825f3e4"},
+ {file = "tornado-6.1.tar.gz", hash = "sha256:33c6e81d7bd55b468d2e793517c909b139960b6c790a60b7991b9b6b76fb9791"},
+]
+traitlets = [
+ {file = "traitlets-5.0.5-py3-none-any.whl", hash = "sha256:69ff3f9d5351f31a7ad80443c2674b7099df13cc41fc5fa6e2f6d3b0330b0426"},
+ {file = "traitlets-5.0.5.tar.gz", hash = "sha256:178f4ce988f69189f7e523337a3e11d91c786ded9360174a3d9ca83e79bc5396"},
+]
+wcwidth = [
+ {file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"},
+ {file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"},
+]
+webencodings = [
+ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"},
+ {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"},
+]
+widgetsnbextension = [
+ {file = "widgetsnbextension-3.5.1-py2.py3-none-any.whl", hash = "sha256:bd314f8ceb488571a5ffea6cc5b9fc6cba0adaf88a9d2386b93a489751938bcd"},
+ {file = "widgetsnbextension-3.5.1.tar.gz", hash = "sha256:079f87d87270bce047512400efd70238820751a11d2d8cb137a5a5bdbaf255c7"},
+]
diff --git a/post.ipynb b/post.ipynb
index 246960a..a3394d3 100644
--- a/post.ipynb
+++ b/post.ipynb
@@ -6,22 +6,34 @@
"source": [
"---\n",
"title: PSAS Magnetometer Calibration\n",
- "author: Nathan\n",
- "date: 2019/11/05\n",
- "---"
+ "layout: post.liquid\n",
+ "published_date: 2019-11-05 00:00:00 +0000\n",
+ "slug: magnetometer_calibration\n",
+ "is_draft: false\n",
+ "description: |\n",
+ " Solving for the soft and hard iron IMU magnetometer calbiration on a\n",
+ " amateur student rocket launched by Portland State Aerospace Society.\n",
+ "data:\n",
+ " mathjax: True\n",
+ "---\n",
+ "\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "For a number of years I was involved with a university rocketry club called PSAS{% sidenote %}[Portland State Aerospace Society](http://psas.pdx.edu), a student aerospace engineering project at Portland State University. They build ultra-low-cost, open source rockets that feature very sophisticated amateur rocket avionics systems.{% endsidenote %}. One of the things I really liked to do was play with the data from the launches and learn how rockets and flight electronics work.\n",
+ "# PSAS Magnetometer Calibration\n",
+ "\n",
+ "_Published in November 2019_\n",
+ "\n",
+ "For a number of years I was involved with a university rocketry club called PSAS{% capture sidenote %}[Portland State Aerospace Society](http://psas.pdx.edu), a student aerospace engineering project at Portland State University. They build ultra-low-cost, open source rockets that feature very sophisticated amateur rocket avionics systems.{% endcapture %}{% include \"sidenote.liquid\" %}. One of the things I really liked to do was play with the data from the launches and learn how rockets and flight electronics work.\n",
"\n",
"\n",
"Our rockets carry an instrument on them called an **IMU** (Inertial Measument Unit). An IMU typically measures both acceleration and rotation-rate of an object in all directions so with some clever math you can recreate the exact position, velocity, and orientation of the rocket over time. This is the only way to know where something is in space, and very important for rockets. IMUs have a problem though: they're not very precise.\n",
"\n",
"\n",
- "Since our IMU is fixed to the rocket, {% marginnote %}![diagram of the rocket on it's side showing the layout of the internal components](img/L-12_overview.png) Overview of the rocket \"LV2.3\". The IMU is near the primary flight computer.{% endmarginnote %} which direction is \"up\" or \"left\", etc. relative to the Earth changes constantly as the rocket flies about. In order for the data to be useful we need to know which way we are pointed, which is why IMUs always have some kind of gryoscope to account for rotation. Our particular IMU has rate-gyroscopes that can sense rotation rate, and so we integrate that once to get orientation. Since any integration will give an estimate that drifts from the true value over time, our IMU also includes a 3-axis _magnetometer_ as well.\n",
+ "Since our IMU is fixed to the rocket, {% capture marginnote %}![diagram of the rocket on it's side showing the layout of the internal components](img/L-12_overview.png) Overview of the rocket \"LV2.3\". The IMU is near the primary flight computer.{% endcapture %}{% include \"marginnote.liquid\" %} which direction is \"up\" or \"left\", etc. relative to the Earth changes constantly as the rocket flies about. In order for the data to be useful we need to know which way we are pointed, which is why IMUs always have some kind of gryoscope to account for rotation. Our particular IMU has rate-gyroscopes that can sense rotation rate, and so we integrate that once to get orientation. Since any integration will give an estimate that drifts from the true value over time, our IMU also includes a 3-axis _magnetometer_ as well.\n",
"\n",
"## 9DOF IMU\n",
"\n",
@@ -32,7 +44,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "The magnetic field sensor in the rocket is sensitive, but because the Earth's field is so weak it's easily overwhelmed by local effects (metal screws, magnetic fields from nearby wires, etc.). In order to get good orientation data we need to undo{% marginnote %}![photo of two men awkwardly holding a large rocket body and an angle](img/L-12_ground_calibration.jpg) Members of the PSAS ground crew lifting and aranging the rocket around as many different orientations as possible before the flight.{% endmarginnote %} these local effects.\n",
+ "The magnetic field sensor in the rocket is sensitive, but because the Earth's field is so weak it's easily overwhelmed by local effects (metal screws, magnetic fields from nearby wires, etc.). In order to get good orientation data we need to undo{% capture marginnote %}![photo of two men awkwardly holding a large rocket body and an angle](img/L-12_ground_calibration.jpg) Members of the PSAS ground crew lifting and aranging the rocket around as many different orientations as possible before the flight.{% endcapture %}{% include \"marginnote.liquid\" %} these local effects.\n",
"\n",
"\n",
"So a little before the flight we took the nearly complete rocket, powered the electronics up, picked it up and tried to move it around in every direction.\n",
@@ -50,13 +62,13 @@
"## Earth's Field Strength\n",
"\n",
"\n",
- "But what is the strength of Earth's magnetic field? It varies over time and over the surface of the Earth. We know where we launched from{% sidenote %}\n",
- "Latitude: `43.79613280°` N\n",
- "Longitude: `120.65175340°` W\n",
- "Elevation: `1390.0` m Mean Sea Level\n",
- "{% endsidenote %} and the date, so we can look up{% sidenote %}[NOAA's magnetic field calculator](https://www.ngdc.noaa.gov/geomag/magfield.shtml)\n",
+ "But what is the strength of Earth's magnetic field? It varies over time and over the surface of the Earth. We know where we launched from{% capture sidenote %}\n",
+ "Latitude: `43.79613280°` N
\n",
+ "Longitude: `120.65175340°` W
\n",
+ "Elevation: `1390.0` m Mean Sea Level
\n",
+ "{% endcapture %}{% include \"sidenote.liquid\" %} and the date, so we can look up{% capture sidenote %}[NOAA's magnetic field calculator](https://www.ngdc.noaa.gov/geomag/magfield.shtml)\n",
"Model Used: `WMM2015`\n",
- " {% endsidenote %} what the expected magnetic field should be:\n",
+ " {% endcapture %}{% include \"sidenote.liquid\" %} what the expected magnetic field should be:\n",
"\n",
"Its direction:\n",
"\n",
@@ -182,7 +194,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABYAAAAH3CAYAAAACOftEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hb5Zn38e8jaaRpnuoybmPTbGNswJgWmunVTmCzhLAbAlk2DQJJINkl7G5Cskk2jZCEkk0nhGzy7m6yIcY0x/RmHIwBYwxu47E9nurpRfV5/zhHQqPReIpnRjOa3+e6dI10dHR0S6NydJ/7uR9jrUVEREREREREREREso8n0wGIiIiIiIiIiIiIyOhQAlhEREREREREREQkSykBLCIiIiIiIiIiIpKllAAWERERERERERERyVJKAIuIiIiIiIiIiIhkKSWARURERERERERERLKUEsAiIiIiIoIx5jpjjDXGzE9adr8xpiplvSpjzPNjHF5axpj5bszXZToWERERkfFKCWARERGZ9IwxZ7tJpH9MWhZPLFljzH393O6DSetcl7T8DnfZkf3c7uupibZ+1ht2DBOJMabMfc7OznQsgzUeYjbG/I0x5hFjTL0xJmyMaTDGPGqMucYY481UXKPBGHPLeHx9p7xH46c2Y8zzxpgPZzo+EREREVACWERERGQgPcBVxhh/mus+6l4/GWIYTWXAV4CzMxzHUGQsZmNMjjHm98AfgOnAD4FPAN8BfMADwD+P0N19HFg4Qts6FLcA16VZvhvIA34zptH09RBwDc778ZtABfA7Y8zHMhqViIiICEoAi4iIiAxkNU6y79LkhcaYcuAS4M+TJAYZI8aYggFW+QZwFfAVa+2J1tpvWGt/Za39rrX2AuA0YP9IxGKtDVtrgyOxrbhBPL5Bs44ea210pLY5TJuttQ9aa39jrf0WcDrQAXwhw3GJiIiIKAEsIiIiMoB3gVdwqvuSXQ3EgP8ZjzEYY+YZY+42xrxljOlwT88ZYy5JdwfGmI8aY7YaY3rcv9fFW1mkrPe0MWavO/R9tTGm3RhzwBjzn8aY3DTbPdYY80djTJO77TeNMdcnXX82sM29+JWkYfT3J60z2+1FW2eMCRpjthhjPm+MMf3Edrgx5mE3tjpjzL8bR7kx5jduvG3GmF8ZY/JGKeYCY8w3jTE7jDEhY8x+9zkq6yfmhW47hzZgTbr/kbt+BfBZ4Flr7dfSrWOtfcla+6uk29xijHnGbRURNMZsd5+TdBXlqffXpwdw0nWnGGNeMMZ0GWP2udv0DfbxGWOWGmN+YYzZ5m6jxRjzuDHmlJRtWGA2sCLpua5yr0vbA3gYr5lBvZ4Hy1pbB2wFerWBMWn6LCc/TmPMHUmXE61pjDGfcV9LQWPMJmPMOcONTURERCYf38CriIiIiEx6vwG+Z4wptdY2u8s+ilOZ2zJOYzgJOB/4P6AKKAE+AqwxxlxgrV0XX9EY81Hg18Am4EvAFODbwL5+YskD/gI8DXwROBX4JNAA/FvSdk8D1gI7cdoTtAOrgJ8bY6Zba/8DeBunSvJ7bqx/dG++w91GOfAizpD6e91trQS+DxwBfCZNbGuBJ4B/Aq4A/hWnGvMq9/7+BViB01KgDrhthGMOAOuAY4Cfu+svAG4E3meMOcVam9y2I999Pp9wtxtL85zHXQb4gV8dZJ1UXwAeAf6E0y7kDOB2YB7Oa2g4ZgGPAv/lni7BeZ6nAp9OWbe/x3cRsNS9/V5gBnA98LQxZrm1dou73jXAj3D+V99wl3X0F9gwXzMDvp6Hwk2EzwGahnP7FJ8CCoGfAiHgc8BDxph5SZ8FIiIiIv2z1uqkk0466aSTTjpN6hNOH1cL/GPSsvnusq/jJLVCwKfc6xa6163CSbJa4Lqk297hLjuyn/v7unv9/AHiOpQY8tNsLxcnGfl40rIcoBbYnnwbd/thZ3ex1zaedu/rcynL/wTUJ102wFvAeiAnZd3/BbqAUvfyke4270gT83fc6z6Ysu0/usuXpontsymPrwYn6XhnyrY3AAdGIeZ/cv9XJ6YsX+ne5lNpYr59kK/VO931lw3h9Z3utfAVIArMTlp2XerrErgfqEq5bZW73qfTPEcWWDyYx9dPXFOBeuAnKcv3Ak8f5D2S/NofzmvmoK/nQbxH73RjnwYcj5PUtmlec32e46Trer2eeO9zaQ9QmLT8eHf5DYN9Deikk0466aSTTpP7pBYQIiIiIgOw1jbiVDvGWzB8FGgEHhuvMVhru+LnjTG5blVkIU7C66SkVZfjVF7+LPk21tp3+ts2TjL1JynLngGmGWOmuJePBRYDvwWKjTFT4yecFgB5OL1qB/J+YLu19g9JsVngu+7FVQeLzVobxmmfYYD/TFn3BaDUGFM6wjFfDfwVqErZxstAJ3BemtvcN4jtAhS5f9sGuX7itWCM8RpjStxYnsJpB7d8sNtJ0Q78ImXZ992/K9Os3+fxpbxG893XKDj/r5NS1x+CQ3rNuFJfzwO5BadiuB54DfgQTvXxl4YWelq/sdYmKp6ttZtw/v9HjMC2RUREZBJQCwgRERGRwfkN8D/GmCNxWin83lobTmkpOlR24FWGF4Pb3/VfcRLF8w5yv/Pdv9voK90ycCoju1OWxYeil+EkBxe6l3/ontKZ3s/yZPNxWjKkircHOCxNbD0py+ItMqr7WV6GE/9IxbwQJ1ncMMhtHLDWDraVSDzxO9jEJMaYi4EvAyfiVEQnKxnsdlJUWWtDKcvecf+m/k/SPj5jTBFOdfuVOO0aku0aZlwwvNfMQK/ngfwWp1o6Byep/iWgGKeK/lDtTrOs2Y1NREREZEBKAIuIiIgMTrzX7k+ASpxkbH/iCcg+E4y58t2/qUmnkYzhBzi9Q38MPA8cwBny/zHg74Z4v6miB7nOpPz9qnv/6WzpZ/mhOFhs/V030jEb4CWcpGs6qcnQobwO4vd/HE7P5oMHYsz7cKqX1wM34bRSCOJMqnY/YzMpdH+P7/fAucBdwEagFaca90uMbXXrYF7PA6my1v7FPf+oMWYX8CBO1fe9SeulPehjjPEOI75DOvokIiIik4cSwCIiIiKDYK0NGmP+G/gE8I619pWDrF7l/j0aeDPN9UfjtAIY0gRRQ4zhauABa+2NyQuNMdf3E+tRabaxYCjxpdju/u1OSoz152CV0LuARWmWH510/UgZqZi34/QKHmgbw/EITn/h63Am7hvIh9z1z0uucjXGXHSIccw3xvhTqoDjFdQD/k+MMSU4E8d91Vp7R8p1/57mJkOplh/L10xa1trfGmM+B9xhjPl1UguHeGVxKe+99wAOH+2YREREZPJSD2ARERGRwfsBTnXo5wdY7y84VcA3uK0YEowxS3GqHh+x1h6s8vBQY4iSUiFojFkIXJ6y3qs4fUv/0RiTn7LuoSQJX8NpCfA5Y8y01CuNMcltEOLJsdLU9XCqno80xlyRdFsDfMG9+OdDiDHVSMX8O2CRMeaa1CvcPrzDHrpvrd0P3AOcbYz5l3TrGGNONcZc516M4iRPPUnXe4EvDjcG1xQg9WDCLe7fhwdx+3hcqa/Rs4FT0qzfQfrnOp2xfM0czH/gTAz36aRl8bYq56as+7kxiUhEREQmJVUAi4iIiAyStfZt4I5BrNdojLkdZ1Ksv7pVuw04VYmfwElmDWtyqMHGAPwJ+JgxphMnsXk4TiLqbWBZ0vbCxpjbgF8CLxhjHsCZLO4zwBvACcOMM2aM+RhOL9YtxphfADuAacDxwAeAgLtunTGmGviwMeZdnMroXdba9cC3gauA3xlj7gV2ApfhVI/ea63dPJz4Rjnm77sx/toYcynwIk6i8wjggzi9me8/hFBvw+nr/HVjzAdw/tf7gXKcCeYuAuLJ4YdwErPrjDG/wWlLchWHXgiyC/iGMeYYnLYUl+BM/vYza+2AbTKste3GmCeBfzLG5OEkRpfitCh5i749jjcAHzHGfAV4F+iw1q7uZ/Nj9poZwJ+ArcCtxpi7rbU91tq3jTHP4PzvynFaclwIzBqjmERERGQSUgJYREREZBRYa+8yxuwEPotTeVgA1AL/D/iatbZqlEP4HE7v1b/BSaptBT6JMwx+WfKK1tpfuRPJ3QZ8CydhditO0nPxcAOw1r5kjDkRJ+F5LU6CsgEnCZ1awXwNTuL0Tpwk66+B9dbaJmPMacA3cSa0K0qK767hxjbKMfcYY85zY7wauAKnInw38F/Ak4cYY9gYcyVOMvkf3bhKcHoL/xV3gkB33eeMMVfjJIS/h9ML+n+AnwGHkgitwXls38epBG7G+R99ZQjb+Duc5+46nPfH6zgV6tcAZ6es+yWc/8WtOMnh3TiVvn2M9WumP+4BhW8DvwI+DtztXnUNcB/OZ0MI53FcDzSOVWwiIiIyuRhrhzr5tIiIiIhMBsaYPwOLrLWH0gtYREREREQySD2ARURERCY5Y0zA7ZGavOwYnCHzh1StKiIiIiIimTVuE8DGmF8aY+qNMZuTlpUZY9YaY7a5f0vd5cYY8yNjzHZjzBvGmGH1qhMRERGZpJYBbxljvmyM+bgx5js4fWu7gO9kNjQRERERETkU4zYBjDMxxsUpy24D1llrjwLWuZfBqU45yj19AvjxGMUoIiIikg324vQI/hRwL05f2aeB0621OzMYl4iIiIiIHKJx3QPYGDMfeNhau8S9/A5wtrV2vzFmJvC0tXahMeYn7vnfpa6XodBFREREREREREREMm48VwCnMyMpqVsLzHDPzwb2JK23110mIiIiIiIiIiIiMmn5Mh3AcFlrrTFmSOXLxphP4LSI4JOf/OTyioqKUYlNZCKLRqN4vd5MhyEyruh9IZKe3hsifel9IdKX3hci6em9ISNt//79jT/5yU+mpS6faAngOmPMzKQWEPXu8n3A3KT15rjLerHW/hT4KcAdd9xh77jjjlEOV2TiqampYdasWZkOQ2Rc0ftCJD29N0T60vtCpC+9L0TS03tDRtonP/nJ3emWT7QWEH8GrnXPXws8lLT8o8ZxKtCq/r8iIiIiIiIiIiIy2Y3bCmBjzO+As4Gpxpi9wFeAbwH/bYy5HtgNfMhd/RHgUmA70AV8bMwDFhERERERERERERlnxm0C2Fp7dT9XnZdmXQvcOLoRiYiIiIiIiIiIiEwsE60FhIiIiIiIiIiIiIgMkhLAIiIiIiIiIiIiIllKCWARERERERERERGRLKUEsIiIiIiIiIiIiEiWUgJYREREREREREREJEspASwiIiIiIiIiIiKSpZQAFhEREREREREREclSSgCLiIiIiIiIiIiIZCklgEVERERERERERESylBLAIiIiIiIiIiIiIllKCWARERERERERERGRLKUEsIiIiIiIiIiIiEiWUgJYREREREREREREJEspASwiIiIiIiIiIiKSpZQAFhEREREREREREclSSgCLiIiIiIiIiIiIZCklgEVERERERERERESylBLAIiIiIiIiIiIiIllKCWARERERERERERGRLKUEsIiIiIiIiIiIiEiWUgJYREREREREREREJEspASwiIiIiIiIiIiKSpZQAFhEREREREREREclSSgCLiIiIiIiIiIiIZCklgEVERERERERERESylBLAIiIiIiIiIiIiIllKCWARERERERERERGRLKUEsIiIiIiIiIiIiEiWUgJYREREREREREREJEspASwiIiIiIiIiIiKSpZQAFhEREREREREREclSSgCLiIiIiIiIiIiIZCklgEVERERERERERESylBLAIiIiIiIiIiIiIllKCWARERERkQlo69atrF69OtNhiIiIiMg458t0ACIiIiIiw2WtxRiT6TAyYtu2bQCJJHAgEODCCy/MZEgiIiIiMg6pAlhEREREJqQdO3bw8MMPs3r1anp6ejIdTsYFg0FVBIuIiIhIH6oAlkkv/kNp5cqVk7aCaDxobm7m+eefT1y++OKLycnJOehtWltb8Xq9BAIBACKRCD6fj1gshtfrxVpLOBwmJyeHSCSC3+/HGENnZyeRSASv10tnZyfhcBhrLZ2dnbS1tREKhYhGo+Tm5mKMoaGhgVmzZhGNRrHWsmTJEgoKCkb1+RARkYFt2bIlcX7t2rWUl5dz2mmnZTCi8SEWi+HxqM5DRERERBxKAIu49uzZQ2VlZabDmDQ2btzIvn37ADDGYK3tdf1jjz2WibB66ejoSJyvqalJnH/yySe54IILyM3NzURYIiLSj6ampkyHkDEXXXQRjz/+OABr1qxh1apVGY5IRERERMYLlQbIpJacdGxoaMhgJJPL448/nkj+An2SvxPB2rVrMx2CiIikEQ6HMx1CRvj9/kyHICIiIiLjlCqAZVILhUKJ883NzRmMZPKIRCK9nvdkCxYsYOHChXR2drJ3715qa2sJhUKJvo5erzfRmqGyspLOzk7Kysqora2loaGBkpIS/H4/BQUF7Nq1izlz5hCJRMjJyaGiooK3336b2bNn4/V66ejooLq6mmXLlhEIBOjs7OTNN98kEAgQDAYByMvLo7CwMNEq4rjjjmPLli0cOHBgzJ4vEREZ2KpVqxItnR577LFJUf26Z8+exPn44z3ttNN48cUXMxWSyKTR3d1NXl5epsMQEREZNCWAZVJLrhLq7u7OYCSTx/79+xPnk5OtyT1/CwoKWLhwIQsXLhzUNufPn99n2ZIlS/osq6io6HX5uOOOS5yfNm1a2u2kOv300xNJBvVYFBHJnFgs1utyunZC2WzTpk19lpWXl2cgEpHJ5dVXX6WmpoZZs2axfPnyTIcjIiIyKMpcyKTWXyWqjJ74c15SUsKFF17IqlWrWLVq1YATvo1Ha9as6ZOAEBGRsRGJRHpdXrlyZYYiGZ/a29szHYJIVorPC5E8P4SIiMh4pwSwTGqTtU9gJnm9XsBp9zBRlZaWJs5XVVVlLhARkUksGo0C6UeBTKZK4Msuu6zX5SlTpgA6yC0iIiIi71ECWCY1VW+OvXjSfSJW/MadccYZzJw5E5jYj0NEZCKLVwCn+y7P9sq85557LnE+tRVR/Pmorq4e05hEJhufT90URURk4lACWCa1xI/GSVQplGnZkAAGOOKIIwASE9SJiMjY6urqAtJP4rp79+6xDmdMpRvB1PnHP7K3spLDf/ELAOrr68c6LJFJIV5lr57bIiIykUy4w5bGmIXA/0tadDjwZaAE+DjQ4C6/3Vr7yBiHJxNMNBrlsJ/+lJLXX2fTffdlOpxJYd++fUDfBHDHb39Ly5e+lImQhqX4T38ClAAWEcmUeEuhOXPmJJbNnTuXPXv20NTUlKmwxkQ8+X366acDEHrjDZo/9zkAfM89B1ddpRYQIqMk3l/bGJPhSERERAZvwlUAW2vfsdYeb609HlgOdAH/5159V/w6JX9lMKy1dM+aRfuCBb36usroCYVCLLntNtpvuIF9S5awt7KSvZWVtHzpS+QsWZLp8Aat9fLLWXbjjX0mIRIRkbHR0OAc86+rq0ssmzZtWuJ8a2vrmMc0VuI9jgsLCwGodyfAm+O2fZj55z9nJjCRSSA3Nxd4rw+5iIjIRDDhKoBTnAfssNbu1hFYGY74jlvHkUcqkTdGpk+fTnD6dHL+8pdey0t/8AMK/uZvhr1da+2YVmLsrawEtPMvI6Orq4t169bh9Xq59NJLMx2OyKiLRCJEo1ECgcCwtxFPfsZ7sqeeb2tro7i4ePhBjlOrV69OnPf7/Ynz0x991Pm7ejX2/e9n/wc+kLgu3vIqtV+wiAxdXl4ePT09+u0gIiITykRPAH8Y+F3S5c8YYz4K/BW41VrbqymcMeYTwCcAbrzxxqyfIEQGVltbS6S7G3AqiPSagAMHDozq9mtra5meNDGN5+WXAWgFWifQ8+95+WW2//M/U7tzJ7Nmzcp0ODLKRvt9sW3btsSQdX0OyUQy3PfGE088AcD5558/7KRkbW0tTU1NtLa29nrftLS0EI1GWbduHRdeeOGwtj2eJbe32LdvH3R2AtBYWgo1NTBtGrvOOoumpib27t2Lx+NJPN8rVqw4pKS7DM5of2dIZtXV1dHe3k4wGNR39hDofSGSnt4bMlYmbALYGOMH3g/Em4b+GPh3wLp/7wT+Ifk21tqfAj8FuOOOO6ySNtLZ2UlLXh4YQ0lJiRJ5rtF8Hqqqqmi86CKWZ0HP5QPNzbR5vXrdZIlYLMaaNWs46qijWLRoUZ/rR/P/bK2lra1t1O9HZDQM5zUbnzzJ6/X2qtodildffZXysjJmtrZSsWxZYvnZZ5/Npk2bhh3beBd/7mbNmsW0tjbqL7oI35FHUpH0WGs9HsrLy3nttdcoLCxM3Gbz5s2sWrUqI3FPNtn42hNHWVkZfr+f/Px8/Z+HSM+XSHp6b8hYmMjjwC4BNlpr6wCstXXW2qi1Ngb8DDg5o9HJhBCLxcAYvB6PhnGNkaamJmJZ0jahfeFCCjWcNmvEq+q2bds25vcdn9BJZDLodkfeAIkDH8PlCQaJfPSjvZbFe/pXVFQc0rbHo3grB4Dly5dj3AlV89///l7rTX/qqcT5jo6OsQlOZJKIvw/120FERCaSiZy5uJqk9g/GmOTykSuAzWMekUw4e/bsAWvB4yEaCiUmVREZDG9hITna+c8ayYmVsZY8iZVItmtpaUmcP9SJ2gKNjX2WxVtKxCdqyiZr1qzpddn29OCZOhWPW+GbWO7xOPs3IjLi4vsLmdxvEBERGaoJmQA2xhQAFwB/TFr8HWPMm8aYN4BzgM9nJDiZUOJVSFPefJPcujodyR8DgUAAn1uxNOHl52NVuZk1Ot0+mpkwffr0jN23yFhLrngfKAHc2Nh40CrhQH094CRC4+IJ4KqqqkOIcmKItbcTa2nBO2NGr+UFV17JJcuWcfzxx2cosr46Ozt7Jf9FJiolgEVEZCKakAlga22ntbbcWtuatOwaa+1Sa+2x1tr3W2v3ZzJGmRjmz58PxtC9ahUYowTwWIhE8GbLBDS5uZCUdJCJLXlY+lirTpoYUSTbJSeAew7yGRqLxXjppZd45pln+k20WI+HgquvJlpbm1jm9XpHLthx5vDDDwecPscA0b17IRLBpFQ75517LrGWFubOndtnG8FgkGg0yurVq1m9evWoxxz35JNP8txzzx30fy4yEurr6w+5vczBJCeANXpQREQmigk7CZzISIjFYmAtntJSvB0dfRLA8R9GF198MTnZUrWaYZH2drqypGLCBAKEM1g1KiMrPz8/cT41KdLU1JSYRGmkzZkzRwefZFIZbLV9cruD7u5uCgoKEpfj75lAczMUFFB71lmU3Xcf+StXJiqAwZlg0RgzQpFnXtTtoR/fJ/GUlDh/p03rtZ531iyCL76If+nSPttoaGjoVR397rvvsmDBgkOK6ZFHHgHguOOOo7Ky8qDrr127NnFeE9LJYFlriUQiA+6PB4NB1q9fD4ze6ysWieDp6SGWm5t1nzEiIpK9JmQFsMhIiU8C5yspwdvdTSQS4cknn+xTFfPYY49lMMrsYiIRrC87jj1FvV5MKJTpMGSEZGoo5969e5mRNHw7k60oRMbCcCY9jE9kFg6Hgfcq9kvXr2fK9dcDcOCGGwB6JYDHW8uBWCzG6tWr2bt377BuH3/88SSYDYUo+Y//wH/00b3W886dS+s3vpF2G42NjTQ3Nycuv/POO4n9nuTlcTt37uy3WjgUCiWSvwCvv/46+/btS0yqGQ6Hqaur67fSePfu3Qd7uCIJDz/8MI899hgHDhxILNu6dStVVVU0NDQklu3YsSNx/qmkyRDTeeutt6hNGj0wWHk7dnDcrbcC7x2UERFHQ0PDIff3l8yrrq5m9erVGuWQZbIjCyMyTPEPNFtQgLe7m1AopOTLKIrFYvg6OijLkhnJbSCAVzv+WSOTvfziyRKAAwcO9Kp0FMk2w0kAxxOnAGeeeWbi+zt88sn45s9PrBetrcVbUZG4vHnzZs4888xDC3gEvfXWWwC89tprzJkzh8bGRl566SUALrjgggEnrmtvbweS2lyEwwROPbXPet6yMgD2VlayDKj+8IfJ9/vZc8opzgS4/Xj++ecpKSlJJM5XrVqViBn6jo5IZ+PGjQOuE/fGG28wb968Qa8vk08sFus1GuCFF15g1apVg3otdnR08Prrr3PssccmqnRTb7dz584+tzvppJOoSPocSY0n5vcTcqvv1QdY5D3bt2/n7bffTlzOyclh8eLFNDY2sm/fvgxGNnhFRUV0d3cnDriOhdEcadifE044AWMMs2bNSnv966+/DjgH2o5OOcgsE5cSwDKpJXbaCgrwdHcnfljFLVmyhM2bN2cgsuwUf75DCxdmOJKR4S8oIDqGOwcyulKreN73vvcxdepUAGpqavrdQRqucDicGF2Q3H9469ataft2imQLay1Yy7wHHmD3tddy4MABytyEZX+Sf4g999xzifP5eXkATF+zhp5nniH417+Sv3Jl4vrxVgGc3HohNRG1du3aAYesp+6n2FAI4/cPeL+Vv/89AHtOOWXAdZOfs7HoEdzc3Expaemo349MTM8880yfZcFg8KC3yauuJpqfT2jqVKqrq4fcZ3/Dhg39vhej0SieYJCQ+5pVAljkPcnJX3C+u+OJxIliNPuHjyfxg7WvvvpqYllubi7nn38+NTU1iWXbt29XAjiLqAWETGrxnba88nK8wSCBpMnJVq1aRel//RfLbrwRQMMfRkAkEsFEIhwYRvXXeGT8fohE9NrIEqn/x9E+Et9fH0NNkCSTQU5rK2WvvALQa0h3f/r7Aen5wx8A8C9dSs6CBXT84hcjF+QIG41qIhsM9psAnlNdzZzqanKOOSbt9QMl3Ufaeeedx6pVq1i1alViEjtwflyK9Kcjzaix5JYP6Sz69rc55itfGXjjw0jexmIxPMEgMbdaXwlgEckWPT09PPzww31G8qgVRPZQBfA4tXbtWmKxGBdddFGmQ8lqsVgMHxAoLcUTDLJp0yaIxVh2003sdRO/cQ8//LAmKzlE1lo8oRDFblXlhOfzYaJRTQCSJVJ/xOl/KjJ6vF1d9Li9rxPtDIah/pxziDcQyF2xgq6HHhqB6EbHoc4nkO7gkA2FMEkHr9PJu0pZLG0AACAASURBVOwyYu3tRKurOW3xYl7csgVwEu+rVq2is7MTYwx5eXk8/PDD/W7nhBNOYOPGjcyYMYOmpiaKioooLy9n7ty5+Hw+cnJyePHFF+no6OiV7D733HP7tLWZMmVK4vxgDgDI5JRcjV5UVMTs2bN5++23E22TysvLOe200xLr9PT04PV6qc/Lw3Z3U7lmDdWXXfbeBqNR8HqZPXs2Ho+Hqe9/P96zzmLjBz6AJxgkUlQE7nd/fyMTYrEYnnAY635uKQEs0tfixYvZsmULpaWlnHLKKQSDQQoLC9m3bx8bN25k5cqVGGOIRqPEYrE+RRHxZKMxhlgsRkdHB93d3b3mzEgWjUaprq6mu7ubiooK8vPz8Xg85OTkYIwhFArh9XrxeDxD3r9vbW3F6/VSWFg4vCfDVVVVRX5+PtOnT+9zXfJIw+THbq0lFosNeT8p/ts0FosRjUbxer00Nzfj9XopKChgx44dbNu2bUjbbGpqSoyMlIlLCeBxKBqNJnbylVgaXbFoFGMM+/fvp2jLFmovuwy/OwFK/lVXUfrNb7LviCMSO4xyaKy15NbVkXfYYZkOZUR4/H6Mu+OSPOmQTEzxFhBz5sxhyZIlY3KfeXl5ifYPXq9Xk8nIpOHr6CDi/pjav38/hw3ze+GII45InDeBAN2rV8O993Leeeexbt26Me+pN5rWrl3bZ5nt7sa4bTD6k3vuubR95zsAxL76VbjySgB8bW1Ya3slZ1etWkV7ezs5OTm97q+srIzZs2cze/bsg97XGWecATjVQocffjjHJFUft//857R+7WvMcYfjL126lDfffDOr/kcyspLbvZx5xhnUvPMOQKKlg7WWzt/9jpxjj8V/zDHk5ubS+IlPYLu78S9fTvkjj7Do4x9n+5e/TNW113LcF77Q5z6izz7Lcc8+22vZa3ffneg13Gf9aBRPJELu/v2AEsAiyYqLi2ltbWX+/Pm9vp/jCd7U7xGv15s2uZmc//B4PBQVFVFUVNTv/Xq93oPuR/gH0SqpP8XFxcO+bbL5SfMVHEzyYzfGDOsgeXwbHo8n8Rs1+bt20aJFLFq0CKBXkjm57VP8fxlXVVWlBHAWUAJ4HEqeTbmurq7fSQjk0MUiEfB6mT9/PjXuZA6BhgZKfv1rCs85x1mnuJjp69ZRf+GFbN26NfFheTDWWqfaVUnBXmKxGNHcXGLZ8pr2+fBEItr5zxLx3pqLFy/utz3DSDvrrLN4/PHHAc0kLpOLt7ubwh07WHbjjbx2773D307qD6NAoNf373iYUDESifDoo48mLl900UWJ9/15551Hbm5ur0muhiJaWztgBbDHrbateP55Gq+7jpUrV1JbW0v0lFPojMUovOaaXuvHq3OTk197KyuJbdmCp58KqOCGDTR88IOJ5G66xJl1ixu6/vQnoo2NVHzkI7z55puDfKQymVVWVtLz5z/DZz/L1CuvpNFtITLv6qtp7uc20//v/9hbWUnDFVdQDGmTvwCl3/0uzV/8IrnnnkvPk08CULBzJ51HHkl7e3uvanVw9mVNKETHkUcmLouIIycnp9+kroxPyUnm1O/uaDSayE3tdw96ycSm7NQ4V19fn+kQspoNhSAnh7KyMrpnzgRg7m9/iz9pyNfUb3+b2Q89hK+9fdBDJR555BHWrFkzprOHTgTWWkw0ihkHP8hHgnErgNUTKTvEhyGP5aiLQ6lIEJnIvF1dRG6+meBIV38Gg0T37En8mMlUcubVV19l9erVrF69ulfyF5z3fbwXbnyYan/q6+sT24k79thjE+c7H3hgwFjiCWJfZSWR7dvZN28eM2fOxL98OZ0PPkjr974HQCyp1+qBz32uz3ZqFi/us8zGYjTddBM9f/kLAKE33iDW1dVrWwDRpqZEFfKBm2+m9WtfI9ftoaoflTKQ8lWraPn61wGY+z//A8DhP/5xv+vHD0TMdiddnOlOclT2wx8ye8eORH/sOdXVFFx1FXOqq5l6//3Mfvddpv7+95Rs2gTACy+80Gfb0WgUTzgMgQC4lXMi4giFQuQYw97KSqLNzTT+4z9i3fdIpKqKaG0tLXfcgQ0GafnGN2j/z/+k4eqrqV2xgvoPfpCWL3+ZvZWV7K2spOXrX0+c31tZSe3551N79tm03X03PU8/TbSxEYDwzp3E3HYxNun9GN6+HRuJ0LVmTZ/vJAAbjWIjkfcuH+S9bCMRbE8PkT17iOzeTfDVV2m75x6sW7wRfPllZ71wmFhbGzYWc06RCDYUoufpp7HBoLMsGKR73TrC27YRa293lnd0EOvqSsSQHFe6y2Mh1t5O3fLlnHjiiYBTICMTnyqAxzn1RRtl4TC4lX5HVVYSevllAgcOkJM0/Dv/0ks5AJS8+iqNZ5/Nyy+/3GvyiUWLFrF79+7EMO5kTzzxBEuXLsXn89Ha2kpbWxsVFRUEAgGampoSQ1oCgQA9PT1EIhGam5vJyclh/vz5icqlSCRCNBrF7/cn+gHF24NEIhGCwSBer5fc3NxxXXUcnzhjoOGqE4UnEEi0gJCJb/r06dTX1+Pzje1X4znnnMNTTz01pvcpkmmeYJCSK69k9/r1TJs2Le06BQUFdHZ2Dmm7RV/4ApG9e8lxh5iO9edzMBjkiSee6Pf6hQsXDnpb1lrWr1/fZ/m8efMS10/57GcH3I53+nRm79rVZ3nITYqF334b74wZtPzLvzDrjTcI79xJ1x//iHf2bPL/9m/p+OlP34spFKLpM59h6k9/SsevfkVLykRb9StXJs7Pqa7GRqPsSzMs1xQWsreyEtzqb7U8k4HEGhqYvWsX765YAUDx5s1M/d3vyD399H5vYzyeRDIYIO/SSzEHGeFjcnPxL1nC9KeeYt8HP5i2kCMWi+EJhbBTpmgfUCRFW1sbhW7B1P7jjgNgX5rWBx2//GXfG+/aRWjDhvfWSfruAYi8+65zH9/97ghFe+jiBzZHQs2IbWloZr/7LsY9IJsstGkTsQMHyFOxSlaZtAngtra2XtUUcXl5eZx44okUFRWxd+/eRG+yeMKvoqKCGTNm8Prrr3PSSSfR3NxMaWkpGzZsYObMmb2qGLxeLyeeeCIFBQXU1tYCzky21Uk7IpWVlYnLxx9/vDMJGbDMnYDsUIZFysBsOAxusqfjJz9hHs5kKSZl2MqMp5+Gs8+mccWKPjMPb926td/tx2KxPjOXD7aqe1eaH2uDcdFFF43bqkJrLZ5wOO2XzEQUMwajFhBZI7lf1lgqLCxMDLmKfy81NDT0mxQTyQbeUIiCqVPJ6eqi052kJBKJEEhqZ+D3+6m4804Ktm3jjTvvTLsdmzIxmnf6dNq+8x2m/vGPwOgmgGtra9mwYQPnnXce+fn5AAdN/q5YseKgPQzBSSDHn4ODTcgGYDs6Eu0dBhLfr5ldVcW++fOd5GuSln/5FwBqkqqL2+++m/a77wag8OMfp+NnP2OfO+w99fYAs3fvZt+8eYnLHQ88QMu//mvicsXLL9Pz1FPknn46tWedBZBoAXLgwAH1Apa0pj/xBKaggIpnnsF4vRTl5HDmmWfSWVR00ORvqrJ77hmwXQqAx32PVj74INXXXENbWxvPPPMM4AyP7urqwhMMEsrN1T6gSBpH/eAHlN19N+333cf0P/8ZvF6Cr7yCb948PAUF1Jx0EjNWr8Y7Zw7hrVuJ7tlD4LTT8JSUYINBTH4+scZGYl1d+ObPJ7x5M5GdO4lUVTHlhhuINTcTa26m/ec/J7JzJ7nnn0/bt76VNpaSr3+dwCmnENm5k/DWrYS3biXvssvwHXUU3hkznANCPh/G5wNjiNbUEGtuJtrURO4ZZxDZs4eWO+4g1tBA2T33EGttJbp3L97ZsyESweTn4yktJdbSgm/uXPB4wOcjVl9PpLoa4/djYzFMXh5NH/sYxGJMuflmAiefTOiNNzB5edieHloLCih8912CL75IaOPGIT3fnhkziNXVDfv/tW/Bgl6XZ77yCp6SEhr//u/dFfZR9MYbxAbRBlPGv0mbAO5Pd3d3rwkHgF4Jv9ra2kQyd0PSESroO4QtGo2mrdxIlpwMjid/4+w4ruTMFjapAhivt9/J3nyHHUbz8uX42tqIDKIRvK+9nQXf+x5bvvrVkQ55QFu3bu01PHQ8icViTguIcZqgHqqWtjbycSq0ZeIbT5P5vfzyy2l7aIpkCxMO48vPJzhnDtFolKeffpqurq5er/tIJELRQXrEnrl7Nx3/+Z+U3H57YllgxQq6Hnoo8V4ezeRMfD/w2WefJTc3N9FHPJ3zzz+fvEGMftm0aROnnHJKn+W5ubmJCYLjoo2NeIaYNDUeD0Wf/zyd//3flN11F4FTT00kc2dt3kyNOwKq4rnnqD3zzMTtim66ieLbbmPfEUdQdMsttH3/+5TeeSfNt95K4cc+RsevfuX0EZw9m5KvfY2m669PJH9Lv/MdTF4evlmzKHR/UJbffz9N112X2H5tba0SwEJXVxexWIzCpF7Tsx96CItzcAcgf+VKiktK6Bxi+638979/0OsW3Hor3Hkn1ddck0j+wnsHaRdt2kTXvHl43XhFhF4t8fJWrSL/Ax9IXM497bTE+TlJLRUDJ54IbosBeK9lkbeigvgvcv+xx+JP+m3rnTED74wZlLntiwCKbrjhoLHlLFxI3iWXDPgYfJWVkHSAM+eII5j2m9/0Xmn58r43nDu310XP/Pn4UiqfZ6XkepIfU1tNDcWXXz5gfCPFWgvBIPj91J13HpEdOxLX7T/55MT5wBln0L1yJUcAHR/84JjFJ6NHCeDxyN2RMNqhGHU2FEoMBZuzaxf1f/u3FKeZJMIYw/zrr6f0hht47d57Kdq8mSN+/GPajj2W+ltuIbenh8P27SMvECBwzDE0XHGFc8NYjJxwmKi1TC0qYpoxtAUCNHd3093aCtYSzc3l6KOPprGujileL4GCArZt2UKkoIDTzzyTwsJCOtrb2bt3L/MPOwyv10swGEy0hcjPz8efk8Obb7xBXUp18nhjrcVEIngGUYExEZSXl9PN2PaMldETjUYzngA+9dRTedntIyaS1dwh/9MefZTWq66iq6sL6H0gJp5QjV57LeCMcHnyyScTw7JzTziB3N//vtdmvTNm4Hd/THo8nlFLzrS1tSXOh8PhtEPFh3MQJz5KKHl75557btrJ7GxbG55hzE5e+MlP0nbXXXhmzABg1jvvEHzmGTxFRb2Gy89KM+lb/Poit0dwwZVXAlDiHvCe+dJLvdaf+uCDBE4/vc/Iqrxzz016IJb6+nqOOeaYRIJt5cqVI/Ldaq0lGAzi9/sz/vl+qOKv5Yn+OA5m3bp1AFx66aWJwprumTM5KqmgJvzmm3T89rfYgxxwOVQlN91E7Z//3O/1LccfT/78+WCMEsAiruTvLZPFn1PZwBgD7ojciqQ2dDYYJNbZie3sxFNUhO3upulb3yL0xz/qsy5LTNoEcFFRUZ8d887OzkQFR3d3N62trRzmJtw8Hk9ihyvep6yrq4tIJMKUKVOw1hIOh/F4POTk5NDa2soLL7zAggULCIfDtLa24vV6E9XDcaWlpZx44om8/vrrtLS0cNRRR+GvqqLw05+m4yCTG8gIiUTeqwAGpv/v//a7asA9shdvzwFQ9MYbFLkVLGH3lGzZTTf12c5U95RqTtL5pe7fLvcEUAa00Vd893eWe+o4yPDTTIvFYphYrM8PwYkqJyeHbtAkcFliPPRcT277UFtbS0VFRQajERlFbnJv/yWX0NXQAG4LhdQDMfsvvZQFJSWJfbaLL744sR/W/rOf9aqgAedHZ/sPf0jxrbcSi8VodCeJGWmvuv1z0yksLOScc84Z0vaKiop6JZUfe+yxxPl0yV+AWGvrsBLAHve5jlcnefLyyLv44r7rpSR/h2L2u+9CIHDQJO6c6mr2VlZSuG0bHQsW8PTTTyeuS21/4fP5mDdvHvPmzSM3N5f169fT1NREWVnZkD67i4uLOeywwwiHw0ydOpVdu3YRjUbZv3//iP64bWpqymhF87x58wiFQsDQJ9m75JJL+u2Fb61l//79/b7+ly1bxpw5c9JeB85vrVAohNfrJT8/H5/Ph7W2z/87Pus81mKOOKLXdbG2Nlq+9CVmrF07hEc1NMbjIehWHPenZPp09rrFGCJComd/LEt+501GJhDAGwhAWZmzoLiYwm9+ky1dXQT0WZcVJm0COJ34DnZJSQklJSXMnDkz7Xrxndl4v7f4suS+dcXFxVx66aWDvu/k4X7d27djx+kQ/myTXAE8EP9xxzHrrbeoOeYYpj74ILlnnUXbj35EtK4O79Sp5F9xBd6KCkxuLp1/+hPNN9+M/+STKb79doLPPUfOwoXkHHssRCJEm5rofvRRPAUF2FCIgiuvdGYyNQbf3LkE16/nwGc+4/yA8nqxwSCRXbvIWbAA29WFjUadnkEdHYnhn221tbS/732j+XQdsnii1JMlOwbGGHAn5BMZaRs2bFAbCMl64dJSPMEgUXefKjkJ5/F4KMjPTySL4+L7YSYQwJtmXy0/PgpnFHWkmVE8bqjJX4CTTjopUf042O+UxuuvZ8aaNUO+LwBTXDyqo1cG2+u/6O678bvVnQdroRGJRNixYwc7koapwtAP3LW2tvZpuZaNdu/ePezbPvroo8O+7WuvvcZrr7027Nun8jc2krNlS69l0/73f9k3fz45Q5hQcTimvvACe/7u79JeN2/+fKKBAJ7OTu0Dirg8Hg/EYnS6I0MkO3g8HuwojqiSsTV5E8CtrX0msPAdeSTF//Zv5J5xBvh82M5OItXV+ObMIXbgAHi9eKZMwRQVEdqwAf/xx2N7ejD5+QRfeomcRYsIb9lCZNcuWr72NSqeesr5YeL3O71lIxEwhvA77+CdPp3wrl0Eli0jsmcP0bo6Au97H5Ft22i75x7KfvhDAEwoRCgUGnBSr+7ubjZv3sxJJ510SE/Lyy+/TENDA5dddllWDzFLCIed/88geaZM6TU8sujmm9OuV3D55TTffHOiojhwwgm9rvdVVhJYtqz3sqQ+QfmrVpGflPgxPh9+ty9fr/65SQchfCUl7L/kEjpra1k0Tpu0Z9vwRWMMGKOd/yyRfFAvk5YsWcLmzZsBeOutt6ioqFBvTMk+7udmzO/H41YqwnvfE9ZaYrEYwWCQ7tWrKb7lFmqWL2dWUuWhDYUSEzYli2aoHdJZZ51F8TAqcqH350+6dhLpeCsq8CVNujYUsw/SW3ks5Z9wAvNuuokD4/wAtmRG/p491F52GcmvcuPx9NoXHy2x/Hxy9+3Df/TRnLx8OX9Zt86Z4AkI+P10+/2YtjZVAIu4mpub8XZ1YQ7hAJSMP16v12lbqc+6rDB5E8BphkNFtm+nye0zNxLiMxwPh2/+fKr/7u/wdXZSW1tLZZrZlpP95S9/AZzJCQ6lYiw+4V1nZydTBjmz9ERmQyEYpX60U1Mbxo8FYw5aQZNp1tpE38dsEH8cSgBnh1gsNuDBtrFw2GGHJRLAO3fuZOfOnSPWD1NkvIkGAniCQeeCm/QFEhOeRaJR8lauxEajxFISu7ajA5OmTYE/3QQtY2C4yd+4GTNmUFdXN+i2Fb65cxMT5kxUvrlzaXUPcMclFyFYa2loaKCrq4uioiL8fj979uzh8MMPZ//+/UyZMiVxgCwajeL1eolEIoRCIXJycshJGuUV7y+c7LjjjiMnJ4cpU6b0mnjsUNXU1DBr1qwR295ghdzCkd27d+P1eikvL6ekpISuri78fj+hUCixfx9/j3V1dVFSUgI4I08G8/qbNWsWy5cv79Wzu7u7O/F75GAKCgoSQ8WTXXzxxTz26KPOXCjuSLG8fftoXbq0z7pjoeTTn+bk1laKzjqLhg99iGXr17PpBz9gyrvv0n7fffh/+ENMLKaqOBGXMQZPMIjv1FMzHYqMII/HM+oFT9ZaWltbCQQCBAIBWlpa8Pv9POX2J77wwgt7jbbv7OzkySefTFw+6aST1DZvkCZvAnjRIuYkTRxirYVQyKkGtRZiMWJtbXgKCnpViCb/AI+5Oy8mXrURvz1gOzvpfuQR8i68kMju3cTa2/EUFdH2/e9jYzH8ixeTs3AhsY4O8i+/nI4HHiC6Zw/5f/u32GAQYwzhKVPwtbdTXV09YAI4mR2BBNuePXtYvHjxIW1jvItPSGZGKdGdu2LFqGy33/tzh1v217pkPIjvJGdLIksJ4OGJRqNs2LCBk046iZ6eHvx+P62treTn5zt9PdvbCYVChMNhiouLKSgowOfzYYxh+/btFBcXU15ejtfrxRhDNBrFWovX63X6TBvjDFdy/y+RSASfz5c4wBXv1W6txe/309bWRk5ODj09PYkfxJm2YsWKXjOPh8PhcZGcFjlU8e8Bv7sjH/P78QSD5O7bR8UjjxBz2yf09PSA+34OvfIKtrMTAgFiLS143GSV7e7GpOlV2vngg0z51KeYOXMm+/fvTyQGR0ryZ/5ll13Gxo0bOeaYYw55u1OmTKGuro633nprUOv7k2ZOn8h6kvZbZv/hD9TceGOiwtMYw/SUXqxHH300APNTZliP/499Pl+ih22spYXgK6+Qe8EFE6aljnV/hxivN/FaM8YQ2beP6J495Cxd6vw+ScPv9+P3+/u8HuMHJ/Ly8hLL4lXnydXn7xtiJXbyiK68vLxDfo7LXnqJ8pdeYtutt5K3Zw+RwkKmZSgBnHfppfQ8+SQHPvUpQm6bksoHH6Tsr391Wr7l5EA0qgSwiKu+vp6ctjYimQ5ERlT8c34on3XJBwdTdXd3s3HjRgoLC6ke5GiOJwaY42jDhg19li1atIijjjoKcPYpg8HgIR+o709TUxMvvvjikG5z0UUXZeS33eRNAKcwxrxXCWoMeDx4482v+9Fn5yvpqIQpLKTgQx8CwO/+UAGYev/9abdVlDSx2Ht34CG/upqmISR/oXei4NVXX6Wjo4MVQ0xG7tixY3IkgMNh7CB7AI93Xq+Xko0bOZA0lHa8SfQAzqYWECgBPFTxyV0Sk7wIAN1r15J3wQWAMyFUsvb2dsrLy9m8eTO7du3qdV1eXh7d3d19tpdcZVVQUIDf76egoACPx0N5eTkFBQXU19dz4MABWlpa8Pl8VFRUUFVVNaS4VZ0sQxF/rYbcqt+jFi+m9v/+j7alS/G3tvZqAeEJhSibNQtvYSGRqioIBqk59thEcrDzd7+j+Etf6nMfsaYmao4+Gu9DDzmXY7ERTQDX1dUlzns8Hk4coURs/ABU8oGoCy+8cES2PZ7FkpL4092KnnibtsDppzP1V79K21M4WluLt6IC29NDrKODpk9+El9lJTlLltD5619T+IlP0HL77b1uM6e6mlh3NyYQwHg82GjU6eUfChHdv5+2736X7hH6bto7IlvpX8WLLxJ87jlira3YSISco44i2tBAzuLF+BcvxobD4PFgOzroePBBTE4OnvJyguvX0/2nP1Hy9a+DtXhnzKDnqafwLVyIf+lSAgO0k7PRKMHnniP02muEt22j253ArfSuu8i/4grMMPbx4v/veUDTqadiQiEWfetb7LviCvY1NpKJmVFsJELrN76RuFywejWt//zPAMx85RUOPPEEJhpNTLYnMtmVl5fT3dpKyeGHZzoUGUHGGAwQHWQCOHm0zSmnnMJ69wBaqtQe/iYUwvp8YAz+xkZCZWUc9stfUnvhhXTPnZtowQNANMqMdeuY5e7nvXbvvX22v3XrVrZu3TqomDOhubmZGTNmjPn9KgE8js047jiann9+yLdLTgDX1NQAzmQQb7zxxkFvN1EqI0ZKJBLBE4nQlDTr9kTXfNppxNIkgsaLrOwBjBLAMjKarr++V1/Diy66iMcffxxwEk5btmyhpaWlz+3SJX+BXkNsOzs76ezspLm5GSDtEfdIJDLk5C/Aww8/POm+P+TQxQ9ylHZ2whNPUFBVhScY5Nlnn2XVqlXOd3Q4jLewkNzjj6fh6qsB8EyblthGQT9tu2Y88wx1K1Ykvmui0WivVgCHarT64KXGePLJJ/ca8pgs3lIpG1iv15krwxgKb7iBgssvp85NfAdfeIF9CxYMeluhDRvgD38AoOX22/FMnUrB3/897e7cGqnzf4wqd6LYVL4jjiCyY4cz90dNDVG3X2bgrLPwzZtHrLkZG4nQ89hj720qP5/Ca6+l8B/+geCGDRy44QZqTzvtkMJr+dd/HXAd38KF5J59Nh0/+cmA6zZ//vM0f/7zTH3wQRo/8hGKb78d/wkn0PHLX2Ly8uhy/y/Jyu65h66U1hy+jg5yWlsB8ASDFAxQkDNaco48stflkkWL6Glvx7iTz0WNwcRi7Nq1iyUpbUxEJqNIJEKgvh7f6adnOhQZacYQG8S+T2p7n/6SvwDEYhx5zz1Meeedg26zZBATty5ziymDU6cSaGyk6tpraT7xxN5J41FW+M47HPWjHwGw6Qc/wBMOk9PSQv7u3WAt3ZWVLPqP/yBcXMzuj36UGRn67aQE8Dh22JIlHHj22UGv7+nuJuZWghUUFPRKSg2U/IW+vdEOtZ/weBeNRjGRiHOkKVvk5cF4TwC7w/OzgRLAQxOLxRIJSHCGO8d7VhcVFREKhfptwTBjxgwqKirw+Xx0dnbS0tLC9OnTCQQCFBQU0Nrais/nIxAIsH//fnp6epgzZw5NTU0EAgGqqqqYM2cOsViM3bt3s3TpUrq7u8nNzaWiooLW1la6urqYM2fOmDwXaXm9TgsgN+Hj9/tZvHgxW7ZsoaCggB07dmQuNpEREom4g0Pdz88cd9LSKe++S9BN9MRiMUKhEJ5gEG9BAZ7iYmx7OzM3bqTjgQcGvI+cww5jymc/S4tb9TuSQ7ST95VGeqRUQcrIsmlJye5UsZYWIjt3juj9Z8rh4TCtdXUs/NnP6Kivp+S223odDEskbb1ePKWlxBobKf/5zwlt2oSvspKCD38YGwxio1FMbq5TEdvRGVic3gAAIABJREFUgae0FI/b17f41lt7JX89paXEmpuZ+dprTpI2EsE7gv0DR7MHcP7KleSvXJn2OhuJQCRCcONGYg0N+BYsIOeII5zruruxPT14pk1zqp9DIefU1YVn6lSIxYhUVVF37rmJ7UXeeYeOND/OK559Ft/8+USbmvC6PZitteybN4/Gj3wEgNZvfnPAx3LgM58BoPTOOym48kr2bdtG549+hM9NIsx85BFm3XffEJ6dkWPcAzLT/vCHRFV0dM8eprsHZgP5+ZholNmzZ2ckPpHxJhKJEAsEyNF7IuuYnBxigxjt8OSTT+Lt6uLYL36R1+65B4yhdMMG5t9/P2999auEystZ5n7uD1b5L39J0z/8Q69lU26+maKbbsIEAsQ6O6lxW0MF3B7283/9a+b/+te8ds89FOzYwYK77krcNp4kBqi98ELK1q+n46ijqPnAB5y+7j4f5S+9ROnGjfTMnEnLcccx7emnKdy5k+oPfxhjLY1nnkne3r0Ep07luC98oU/Mx3/uc/0+npzWVo788Y/hi18c0vMwUrIo85V9fLm5TF+3Ds/llw+8bns7S2+7jTe/9S1eeumlRPXMkEWj5FdX03XYYUD6CTOSFRUV0TaICtr4UOQZM2aQm5tLTU1N2lmuTVKD8dzc3EQyKHl5YWEhZWVleDweWltbeyWUUtdNJxAIEHSHnpZGIr2GHk50NjfX6ZM4TmVrBbD6vw3OY4891qty7uyzzx6xbSdPWllaWpo4H+8deXjScLRFbsIpWVlZGWUZqjKK8xQXE2tvx5tU8RcfzZF8EK+oqIhjjjmGuro6WlpaEkOoFi9eTDgcprOzk9LSUrq7uwmHw1hrWbx4MTk5OU4fyUgk8dqNfxZ6vd5ED+X40Xufz0cwGExUHU+bNo1oNMqUKVMwxrBx40bq6+tH/4mRrBKfYCq+7+A/9r3B3R53v2DNmjUA5HV3E50yxZmwFfBOnUrPY49RfMstAPSsXUvxrbemvZ/Qxo14LrkEGPpndGtrKzU1NYles+Aktx52h7rH1dfXc4SbXBsJuSltDg72XWnb28d8roHRUnjNNZwJdJ1zDsX/9E99rp/TT4/AvKT2GCYQIN6IxltaCknfAwNtJ5sYnw98PnLTVAcbvx+S+h8av99ZFp/8zuMh58gjez1PNhLBhsN4knoHJ4snf8HZJ5pTXe0k4gfRcsVaS2jjRtp/9CMKrrwSgJziYkw4TMGuXRz4/Ocpu+uujO4zpnvNxA9aefx+zAi3lxH5/+zdeWAb9Zk38O9vZnTL8n07zn2QQO4AIQlHaLjDsoW2S2m7L33b0rddekBbem2Xbtttu9tzt7DttrRlt8d26ZayCRBgSSAJAXKROyEJTuz4ih1fsqxzZn7vH9JMJFm2Rj40I+f58AeWPZIeO9Jo5pnn9zyF7MyZMyhXVUhpbcxI4eM2G7g2sFf7Hud44YUXIMsybrvtNv3Yrej4cQAYluhd9Hd/p3/NiorgXL8ejiuvhDR9Omzz5sUvRMoyYLfrLZq0z5KGlhbwcBg8GoWQ9voSPJ54e6ehIUAQILhc+gVfLQbbwoWIHTsG4GKSGABqEr2Fy/buRdnevcN+b1d7O0r37dNvNyZmiE37wx+GbVv8pS/B+8ADAGMIPfMMnNdfDzgcYA5HSoEPODf0GTlZpk7mawoSKivRv2SJPrhoJLFYDGVvvAEAqNixA5233Ybe3t6MjahXrlyZcUiYlui1+f2Y/73vZeyjkomR5C9wcTlAct+8TJITt8mVgMnfDwQCCAQChh4jk0jSzkuQ5SnTAxgAmMsFHgyaHcaItOTfVEsAE2Mma9n0VMFcLvC0Cv7k4Twarad7RUXFmJ4neZm5lOECWPqS85GqEDPFRkg23kSyqSrD68qftoza1t8P+7x5sC9dCkcioeV817sAxD/rnaNcRLIvXz6mwSUAsD2x+qq3txdrEktZ05O/wMVk9kRJjnO0FVhKby86166F57779HkTBc1mw9Cvf43Q88+j7J/+yexoSBImSRkHLY56H4MntowxOFasgOPJJ/XvhcNhlO/ahY477kBHSQnMvSybmXbsxyQJLDGElhCSGPwVDsMxSYO2iInsdv1ivCb5uEhL/kJVMfOXv0zZTlsxoiVl6995R19hMUzS5036ZwlzOjPOA9Akz+fSLt5Fjx2D2tWV8XiRc46Bb34TRR//OGLHjyO4aROCf/gDxGnTUPaDH0BsaMDQb38Lx9q1sC1YALWrC5Hdu+G45hoEn3kGRR/5CFgiGZ2eE3CnFXCyES6imoESwBbGGIv3RcsiGo3C3teHSHk5oomBc6+99lr8h6oKMRyG4nbjpptuGrGXnHaiIbe1odNAT7CpgskyZubQW87qmNM5bOdsJc3NzZhKhwRUAUwmknaFOJnZVcmjSV+uTogR2oWg5Kq5hpYW9H31q+hIS6i6OjpQ1NgIsaIClYmqC+2kofPqq+FJLDUfidZiJhwODxusOJLki89adX1nZ2fGbZMrhI3iqorBn/4Uvk98YtjP6urqsH///qyPoSZWPtmXLs35+a3IvngxLjz/vNlhEAuoqqrCsWXLIAUCmLViBWCxIo3kimDBZgNTFDoGJCShsrISgqpCogKBKYdlqABOJ4RCmP+P/wggnvTlsgwoCqQZMwCYswrHvnAhMEK7LsYYSv72bwEAYmUlnNdeO+widPKqJLGsTF8BMtLqs0JACWCLs9tsIyZtNVu3boXvssvQv3RpvMl0ktK9ezHjySdRcfIk7JKEvkceQeydd+C97z7YFi2C1NgI2Gz6FRaeOPFJrjzhnOttFdKvbvj9fn05sKqqerXN0NCQ3ofY7/ejOO1KIOcckUgEDocjfvVlYAAlJSUpk7r9fj8cDgcEQYCqqhgcHERZWVlKDP39/VAUBR6PBw6HQ49Ti6Ojo0NftiyKIgRBQDgchsPhQDQaRbStDUWLFhn+97A8ux2wcAI4FAqhGPHltVZObBmlvc6o+sOYsrIyPaGyZMkSk6PJbPBf/xWeD30o5SpyPnDOMyaA0/e5VurLrrWnICQXWgKYpa0EKf3mN+HdsAFQVX1oh62nB45EG5dhj9PRASVLC5Jo4vMwkuWkJdkbiRVVmr6+PuzZs0e/PWfOHMycORPnz5/H9OnTDT+uJrR5M/zf+U7GBDBjzNB7XD55EiXf+hY873tfzs9vRdr+1jaVjsfImDgcDjg7OqA4nZg2bx7sBw+aHdKItBYQdAxISJyiKCg5c8bsMMhkcDj0IrNYLIZt27YBuDh87a1/+Re9F27LvfeiIZH0JdZDCWCLK9q3Dx0jDHpIJkYiiFRVwZ2+JJ0x8GuuQfBrX8OFRPUMAPTu3j3sMRpaWhBJnPhwVQUfHIRQXHxxqVOG5e7JFTXJy/q1yjDG2LDkr/Z9rdcdY0zv2ZlcEZRerZMpEV6aocdbcpxau4vkZc7asmWXy4VYKAQ2harYYoIA2cItIDRGK7EKBR38G1NUVITe3l68613vgstCS2GSDXz72xCnTRtxwM6kicXAvN6sV9etxGaxyixSGPQEcIZjiqK334Y0NAQ50dPb0dMDW2JlUzJtnzv05JMo/cY3Mj8RY/D5fOjt7TW8j45Go3rVsGbnzp3616WlpXrV71iSvwD09zhX1WFJcKOYywXbBA+gs4LKp54yOwRiMsYYhmbOBJLOE6yK2WwAtYAgRNfb2wt7Yo4QmVqSK4C3bNkCALAlinoAYNmDD+pfL8hSvEjMRQlgixNCIUN9M4VQCDfcfju6//M/cTbRHw8ApEAAbNcuBBP9gF133onyn/wk5b5KZyc6rrwyZTpyW+KqTX1z85TucxrZswe+KdKPFgDCqgopw3A9q5kqS8epAjg32t/J6vuU8EsvgTkcCL/8MhxXX42hP/4RqiyjNUNf9WTitGlQzp3L6bk8996L0u9+FzwUglBcrK/CKASUACZjoS2XHmk/UPb66+hKDPcKTpuW+UESn3M1O3aM+lxa5W/Q4IXRbHMN5s+fb+hxRtP38MNwbtgAHgjoveNypfb3w5ZhnkMhuxQGtBFj6uvrC2JmgNYDmFpAEEKmOkUUIafNKandvBn+m2/Ggh/+EO2Ji9Il3/kOPO9+txkhEoMoAWxxUm8vVFVFc3MzDh06hPXr1w9LnrlcLrgVBVJpKdw33pjyMyGpmmykg2uxpgbe++9H4Fe/GvaztjFWuBBzFJWXI9zZmdKOw4qytTUpFFoCgxLAxmh/Jyu/Nj333ouh3/8ewaefBgAM/e53hu+ba/IXAIZ+/3uUfPvb4JEIhJKSjAng0tJS9PX1WS7harV4SGFQVRVQFAgjvH7qn3kGXTfdBDEQgCtD713/D38Iac4cAIA0yjEKYww1VVXo6OgwvOokudfvHXfckTLgZCLar0QS/X1dN98Mtbd32CRro/z//M+oSBuyQshU4fF4gAI4rhJsNmoBQUgSQRBgp2PDKSkYjYLZbPoFr5J9+1D+5pso37IFQmK4r2PNGnjf/34zwyQGUALY4gLvfz+gKDh06BAA4MiRI7jqqqtStgmFQogFAvHJiHY7Nm7ciE2bNgEAmKKg7E9/Ql+WN2PJ17+Okq9/Xb8tt7VB8HjQvnjxBP9G1iI2NJgdwoSSvF4I0SgURbF0ks3qFaBGUQI4N4VQASwk9RtNvmjW3t6Ouro6w4+TqWd6Jt333Ye2GTNQs2tXPBmUoYd3NKnnlpVMlQs5JL9UVYUQi4FleP2wr3wF/FvfAgAsfuSRkR/EwD43evgw0N4OXHut4Qq9M0m9CxljqK+vR1tb24Qkf6OHDyP45z+j6DOfgVBeDqWvTx+Mkiv59GmII1VHE1LgogcOFMaAQ0mCQAlgQnSiKKa0cyRThypJYLKMffv2QQiHMTNxEdqZaItV8dvfwrFmjZkhEoMoAWx1bjfEcBhKouo3vTed3ksvcfAhv/MOokeOYP369Rj82MdgW7wY7pUr4T55MqenlerrAdCSvELT2deHkkgEkUiEqvPygBLAuSmEBDAmKDajv6NjzRpEduwAj0TAiooy9gBet24dtmzZghvTVniYTeutXllZaXIkpJB0dXVBiMWADAlgz803I/Ctb0FILDOMVFcP28b3+c+DyzLELBdkVL8f6O0Frr3W0D76/Pnzw763fPlyLF++POt9RxJ+7TUo7e1w33MPum6/HQBQ8fvfxwc+Zmk3MZqiT39aH95LyFTjuOoqRJJ6b1sVSySAZWoBQS4RsVgMkiSNeIyrqqq1j/HJmFXU16OntRV+vx9lScNytX9v57p1ZoVGckQJYIvri0RSEsChtN4roVAIlVu3oibRjDu0eTNCmzejvqkJfTt2wDWOExdSeFS7HUIsBlmWzQ5lRMkD+QodJYBzk633p1WIDQ2ozdLvd6JoS9h5NArB59Mn7Caz2WwTUoE40bR/RyuvNiDW4/F4EJBlSBkGPHnKyxEAIA0NAQB899wzbBvntdciun8/fA8/POrzMEkCEhdUjFQA704ajnvbbbdl3X4k2lyFZNqAXaGqCs41axA7eRKx9vYxP8dEXagixIoiO3ZAKCszO4zsJAmMczoGJJcEv9+PV199FcDILZEoATx1OYuKwGIxBINBzP3zn80Oh4wDnbVZnLeyMqWPb7pt27ZB9nrRnrYjbps1a7JDIxZUM306hAwJJKsQGEP5Sy+ZHcaEoQRwbgqiAhjIW/IXAMSKivgX0SgEr7eghsAxxsAYo9c/yYkoimCKAiFDAthWVAQAuGH9egCA1NMzbBvmdkPp6cl4sSSFJAGnTgHIfR9tZAkrj0bRed11F29HImhftQr+xx8ftm3wqadQ8ZvfoG7vXgDx34GnXdAnhMS57rwTYgGsLGGSBEFR6DOQXBK2b98+6s954mKI4+238xQRySfR7Y6v3gIgxGKoOHIE9c3NJkdFxoISwBbnqajQE3osFsOcxOATAHgpkUjjkoSBRK/euqNH4brrLn0bPjCQx2iJ2dyJJuyRUS4amEVVVSAcxtDdd5sdyoShBHBuCiUBnE+Oq66CY+1a8FAIQmlpxhYQVkYJYJIrRVHAZBniKD2kuxJLCe2rVg37GfN6IZ89CyRaYI1EmjEDCAYBZK8AVpIea53BZYzRt96CfOYM1GAQan8/Oq6+Gur58xj69a8BAOW/+AUaWlpQn0hCO5Iel7lclAAmZATe++5Dyd//vdlhZJcYAme0xzixhnA4jE2bNiGY+HwgxmQ71uOcA5wjlugJS6YWUVX1Feedt9wCp89H53MFihLAFid4vXoF8NLPfCZlqW04USkmRCK49uab418XFUHt7QUAiLW1iCQtaSRT30Ai4d+ZYXK62WRZhhAOgyWS1FMBJYBzow1GowOGVJE338TgL38JobKyoCqAAUoAk9wpigJBljMOgUvnec97hn1PrKhA6H/+B7b580e9b8k3vqF/nS1Bow1YLC0tRUlJSda4AOjxn9+wAe2LF0NNqlauO3QIzg0b9O0aWlpS9nuCxwP/j36k3+5PGsKbDY9Gofb1Gd6eEDI5mChSC4gCpBVQvfzyyyZHUljKktqydHV1Dfu5qqpgsRiQYXUPKXxiVRXEYBBQFHiamswOh4wDJYAtrj8SiSeAE9UpyQcZs2fPBgBU+/2wacuIEU8mAIDS0YHYsWN5jJaYraGhAYA1e3LKsgxBliG4XGaHMmEoAZwbLQFMUjGbDeEtWyCUlgKJRFShYIxR9RPJSUdHR7wCeIwniSwx4FQoLR19u6R9TbZ9dH9/PwCgL4fEqhoMoujTn4Zy7pz+vbLHHoPn3nshlJSMuq9jTifc7343uj/4QbQ2NiLwxBNobWw09rx+v6HkOSFk8tFF0MJC/1ZjV58YEA9k/juqqgoxHEbYguegZPxsNTXoueYaSMEgpEDA7HDIOEydaUxTlK+6GoGjRyEFApA9npQTba1ipdhuB0sMiQMA9223QWxogG3BgilVbUmykyQJ4BwtLS244oorzA4nRSwWg72nB2KiQn0qoARwbmg4RGb1J06gtbERYllZwb2W6OSXjAWTZT2RO5LKp58e9eeCz5f1eWwf+xiA7BXA0USrrfLy8qyPqeGhEByrVmEwcbuhpQUA4DY4sJF5vYgkBurkgodCsM2bl/P9CCETz6yLoENDQ4hEIjh+/Djq6upw5MgRQ/err6/H0qVLL8nVWKqq4tlnnzU7jIKV3CpJydCCKRaLQYhGMURFAVOSNsRdiETQc/PNmGtyPGTsKAFscdMXLEDnli3xxFkopJ9o80SSr/ittxD54x/BfvAD/T5lP/6xWeESk3k8HiBxMPrmm2/iqquuwsmTJ9Hb24tp06bBZrOhqqoq5T5aVWZ3dzeCwSBUVUUsFkM4HIaiKCguLk7ZXkv4JB84DgwMQBAEuFwucM6hKAp6EsthKyoqYLPZEAqFUPT228Dq1ZP/h8gT7W9AFZDGcM4tWZ1uBTWvvw5WXAwUWDKVEsBkLJiijFjFWn/yJNrmzYOQGAiXSfmvfgWhujr78yT2N9leo9o+fPr06VkfU79Pby/sK1bAdtlliB0/bvh+uqRq/8qnnkLf5z9v6G48GASbQitpCClkY00Aq6oKv9+P06dPo6OjA0C8BY3dbkd5eTmOJVZw3nLLLZAkCYFAAK+88krGx+rNobCira0NbW1t+u2ysjKsWbMGO3fuHLYCoqamBrbEhbri4mJwznH06FEsX74cRUVF8Bm4CGclra2tZodQ0JKTviMNShWiUfjSzjPJ1KAlgMVgEBG73eRoyHhQAtjimNsNh6IgrCgITpumH2Rs3rwZADDrF78wMzxiMU6nU08gdXV1YevWrRgaGgIAdHd3G3qMnp6enKqgclHp9eJ8dTVmT8qj5x9VAOemIFpAmPRvKWlL66z+90kjCAK9/knOhFgMGOEEgiVaQ4xW5eq68UZDz2P0It2JEycA5DZAte/hh1F3+DCqtmwZ035Nbm5G8aOPYuDRR2G7/HIwnw9clsGk0Q/N1WAQzO3O+fkIIROPIfcigEAggG3btg37vpaAPX/+vP69LYmhS5Olt7cXmzZtyviz5Hki55Ja3ezfv3/Mz5d+jmGz2dDQ0AC32w1RFHHo0KER71tSUoJly5bB6XSivb0dBw8eHHMcJHfJCeBwhnkVqqpCiEbhSCscIlODtspYGhyEu7bW7HDIOFAC2OKY241ZtbU4eeYMuCgOO9HuueoqXJGYOE2ILW1JrZb8tYqiEydQ/KlPmR3GhBEMVpeROKsngI0kXyZbeNs2FD/0kKkx5IIqgEmuPB4PHMCo/eB9Bqths8n1Il36ipfRFH360xDGcaIb2rwZrptuQn1zMxhjsM2fD/XCBYg1NaPej4fDVAFMiEWMpQI4U/I3V/Pnz0d1dTXsdjuamppQVlaGWgNJmUAggJaWFvT39+sr9cwUi8Vw5swZQ9v29/dPyN9uzZo12LNnj6WPR63o9OnT+teHDh0atmJGSwDT59PUpFUAS0ND6KOVrwWNEsAWxyQJ0ZdeQmM0iu7y8mEHGVJDA4Sk/r+EzK2uRtXDD+PQ978f/4aiQIjFoGYbuMP5pFc/BhsbUTmFKpeoAjg3Vu8BzKNRMJOXNTmuvNLU588VDYEjY+E5cwZ8lNeN78EHJ+R5GGMA51lfo9pMBW8e5yaUPfYYxLo6fZ/ouPpqcAMVyLFjxyAZHBhHCJlc0WgUsVhsXBe4V69ejf7+fpSWloIxBpfLBZvNBr/fj9deew0rVqxAVVUVOOeQJGnY8yxatMjwc3m9XixcuFC/HYlE8OKLL6KyshJXX331iPfjif2o3+9HU1MT2tvbc/9FLaKsrAxerzen1hkEKCoqwuDg4Ig/VxQFTJYhUHuAKUkrMivdtw/BGTPMDYaMCyWAC0Ds2LH4CcyaNSmJJiESwbTZU2UxPZkowWeegRgOY9knP4m3HnsMyyxScRuYNQuDCxaM2DeqEFECODdWrwBGNDrisvR8EQwuA7cKqgAmuVJVFbGaGoiT1Goohc0GqCrOnTtnaDBq+iqaUY1zX5Y+LI65XOAZltWmE0pLIc2ZM67nJoRMDG1ZfHNzM2bkmBTZmLQPqKioGPbzsrKylG0mg8PhMPQcjDGIoojS0lKsWLECK1asGNPztbe3o66ubtj3m5ubYbPZ0N3djblz58KdViyiKAqee+65lO8tWLAAc+caG0WltblYv349gIt9ky1/XGohPp9v1ARwMBgEUxQMBIN5jIrki7bqNTBnDniG/RUpHIVxhnmp0ypYHI6UipklDz0E5UMfMjEwYkV1Bw+iNVEdtPzLX4ZVUjPepia4z51D7NFHzQ5lwlACODdWHwLHIxHTK4AFnw+q3w+xrMzUOIyiCmCSK845xFhM7/U7mQS7HYIsQzF44TGX/ZN86tRYw8qIOZ1Q/f6s2/V95jOo3bt3Qp+bEDI+/f39hraLRqOTHElh0toJZEoOA/GhY+NJhs+ePRttbW3xYdlJFEXRl7aT0WU71rPZbGCyDF+BHL+SMWAMQjSKRWO8AESsgfZ4hSCxw1XtdoDzeBIlUSXC6SobyaC+uRlt06eDDwyg7ujRUaeppxvp6vx4tTY2IlxdjfIcYrE6SgDnxuqVFjwaBXM4TI2BFRdDHRgomARwIBAwOwRSYFRVhZCnBLDkdIIlDa7JZKwJGZ7lcXOmKJDfeQeOVatG3Yy53RCo+oYQa0gc0xhd3UZtB8yxcOHClNYXGlmWKQFskJLlM+/8+fNgigJ/KJSniIgZap97DuHPfc7sMMg4XLJ7vEAggO3bt+Paa68FEN9pHT16FAsXLkRNYgDHjh079L5woxFFEddddx0AoLu7G4cPH8Zll12mN+N/7bXXDE2WZozhhhtuAABcuHABhw4dwoIFC/Sfd/f04Mzu3ejq6sLpPXuwUJJwbPFiRLduHfZY2hKXnp4eHDx4EPPmzUNDQwMA4PXXX0fI4M75+uuvhyAI6O3txYEDBzB37lxMmzYNAPDGG28gaDABfd1110EURfT392P//v2YM2cOGhNVqrt37zacRLj22mshSRL8fj/27t2LWbNm6Uuu9uzZM+rSlGTr1q2DzWbD4OAg9uzZg5kzZ2LmzJkAgL1798JvoAoHiA8ScDgcCAQC2L17N2bMmIFZs2YBiE/JNVoRcM0118DpdGJoaAhvvvkmGhsbMSexxPOtt97SJwNns3r1arhcLoTDYZz8xS8wrbFRT/4ePHjQ0MCHCxcu4Pbbb4fH40E4HMauXbvQ0NCAeYmJ7IcOHcKFCxcMxXPllVfC6/UiEong7Be/iPo//lG/+n748GF0d3cbepxVq1ahqKgIsVgMO3bsQG1tLS677DIAwNGjR1MmJo9m5cqV8Pl8kGUZ27dvR01NjX5AeOzYsZSJx6NZvnw5SkpKoKoqznd2InLqFBYvXgwAOH78ODo6Ogw9ztKlS1FWVgZVVfHKK6+gsrJSX6Z84sQJwz3WlixZok9V3rp1KyoqKvR4Tp48idbWVkOPs3jxYn0Z4rZt21BWVoYlS5YAAE6dOpUyBXo0V1xxBSorKwEAr776Knw+H5YtWwbOOTo6OrA1wz4rk0WLFqG6uhoAsH37dni9XixfvhwA0NTUhLNnzxp6nPT9usvlwsqVKwEAZ86c0QeQ2Do64Dx7FoMZ4rtw4QLWrVuXsl+32+1YlUjWnD17Fk1NTYbiWbBggX6RZdeuXZAkCVcmev/2hEI4t20bIgaGoqTv1xljeg+/c+fO4ZTBCsX0/TrnHKtXrwYAtLa24uTJkyPeV5vC7fF4hu3XZVnGNddcAyB+YenEiROG4knfr0ejUaxZswYA0NHRgePHjxt6nPT9eigUwrp16wDEp5sfO3bM0OOk79cDgcCwYwcj0vfrfr9/2LGDEdOmTdOXvR48eBC9vb3Djh2MyLRfTz92MEKSJP31rO3X048dku3fvx/CuXPo3rkzpY1Cpv16+rGDEcldCP4zAAAgAElEQVT79c4LF3DszBksWrsWAPRjh2Stra1oaWkBgJTqsOrqar23prZfTz52aHM4cMjAvizTfj392AEA7OfPw97ejsAIj6nt170f/ShOnT6N1tbWYccORpSXlw/br2vHDqFQCK+//rqhxyktLcWyZcsAxIcDtbS04Kqrrko5djCipKRk2H49+djhtddeM/Q4Pp9v2H49/djBiKKiomH79fRjByNCoZD+vmhpacHp06f1YwdFUfDqq68aehy32z1sv55+7GCEy+Uatl9PP3Ywwul0Dtuvpx87GLko7nA4hu3X048dsiWcgHjVYfp+Pf3YQZblrI8jSdKYzgmDnZ04ePAg2tra0N3dnfWc8M0338Thw4dRX18/6t98pHPC5GOHsIGWMYC1zgkvXLiAu+++2/RzwnPnzqG3txeiKGLDhg1T+pxQ26+nHzsYHQKo7deDwSCOHDmCqqoqVFVVAUg9J2xvb4d45gxs5eXoz/DaTt+v19XV6XmOqXBOqO3XMx07GFFdXY26ujpLnxMCQLi6GpFIxPBnxkjnhMDFYwcj8n1OmE16rm8yzgm1YwcjMp0TjsS6a3GJriHpjdHb24twOAxXMIhdGzciSoNAyEgkCbBQv11eVgZxaMjsMCaUlatZrcjqrQKEaBTc7OEV0SjsBTRcxWFyxTQpPHpyKB/7T5sNbptt1AovqwwzUh0OCFmKBXg0iqF///c8RUQIMcpIkhmAfiHUaPKNTA6XywUge1UruUhVVQiCoB/Lp1/okSQJgqrClvjbkqmHiyL6lyzJbV4CsRxWiEuXGWNnAQwCUADInPOVjLEyAH8AMAPAWQDv5ZyPeIns0Ucf5Y8WUC/S1sZGdNx2Gzpvvx0A4DtyBHJREW78m78xOTIy1UxWCwilrw8dS5akXNAodLFYDAcefBDSAw/oVzPJyF588UU4nU69ysZqIvv2gQcCcCaqd5JN1vsiXfTAAcjnzg0bEGVVO3fuRCAQwC233GJ2KMQkub43Nm/ejFlbt2LhD34wiVHFDT31FHYGAohWVODGG28cNlgIALZs2YJYLAZJknDrrbcafuyB738fxQ8/PGGxKn19CD79NIo+/OFhP1MHBhD8n/9B/1e+Atddd6H8n/95wp6XTI58fWYQc+35+MfRefvtKCkp0SuRR6MNIzO6/VRjlffFqVOncOLECaxduxalpaVmh1MQXn31VUSjUb3yPP0ztbm5Ge0/+QlmfvjDqElU5BLjrPLeGI3/iScQPX0aFd/+ttmhEAMeeOCBfT/72c9Wpn+/kCuAb+CcL+Wca7/UFwG8zDmfC+DlxO0pw/3ud0MUBP1DynvqFNxTqJcqmfqE4mKwKXZVmHoA58byQ+BCobz0JR2NUFICxeAyOCtgjNHrnxjGE3MM8rV6gtlseg/g5ubmjNtoy7qTW26ZQfB6oWSoRo7s24f2K65A/1e+AgDwfvCD+Q6NEJKFkZaBybRWBcQcWs9mo5XbJF4tLYoi7ImVcumveVVVwWQZgtkr6cikEYuLIdD8qYJn3TPx3P0FgCcTXz8J4C4TY5lwZT/6UXzaeuJERi4qwqIbbzQ5KkKMY4KA+rffNjuMCUUJ4NxYfghcOGx6Apj5fFAM9h2zguTlgIRko71W8rYfSEwlB5C1X2ZZDoMX1WAQg48/Pq7Q0jGbDUN/+MOw73f/5V/Gf+7zQaishODzTejzEkLGL9dhkvX19ZMUCTFCawtELSCM01pAaP2a0899OOdgsgxGCeApi7ndUA3OWyLWVagJYA7gRcbYPsbYxxLfq+aca122OwFUmxPaJJIkqImrbZ6mJhRVT71fkZBCoiUxKAFmjOUTwMGg6QlgobQUgZ/+1NQYciEIAl0AIYblOwEseDwQEomZbAneohxWVSnnz6PoE58YV2yZSIkBHpnUHT4M59q1EEfZhhBijlwrgK28GupSoFUAUwLYOK0CWJv9kF49raoqmKJQBfAUNtVW8l6qRp6KYW1rOedtjLEqAC8xxlJGi3POOWNs2BlpIln8MQD45Cc/aZnBH0YFIxG0nj0LWZJQ6vWio4CWCZPC0dvba3YIBYNzjlAwiEB3d8HtT8zQ3d2NWCyG9vZ2qImp5lbDXngBLMO/Zb7fF20tLWCjDK6yigsXLuDChQtoa2uzdHKfTJ5c3hvRaBQ9PT0IBoN52WfyYBBVRUXY19ODbdu24aabbhq2jTaMyejEbwDg584B1dUYmuDfQb366uF/lyuugPDzn8cniT/yCDoHBoCBgQl9XjLx6Fjq0hAKBvV9iJF9Wi7bTkVWeV90d3ejp6eHjl1y0N3djaKiIjgcDvT09KC1tTWl8r2jowM8EEBXTw8ilFjPmVXeG6Phc+cCX/rSJbv/miqsf3aZAee8LfH/LsbY0wCuBHCeMVbLOe9gjNUC6Mpwv38D8G9AfAic1Rttp+v0+VDq80F1uVDe3W35RuGkcNFry7h2txuOsjL6mxlQVlaGiooKVEWjyEeTA6GyEmrahTLb0qWIHTgA26JF4JEIAEBubgZiMdhXrULVKIMr8vVv3Aqg9MABuO+8My/PNx7t7e1QVRW1tbVU0XQJM/reCIfDKC8vh9frzcv7Kbh/P9ibb6I8MUC3trZ22Ml+eXk5gNze3+HmZvCqKrgm+HdofeIJ1Hz+8xASg3Wix46hj3NU0+dLQaLjgqmvze02vA/p6+sb0/5mqrHC726323Hu3DlUVFRYIp5CUFpairKyMpSVlaG8vBwulyvlb+f3+zHodqO+oQE+alU0JvRaJPlQcAlgxpgHgMA5H0x8fROAvwfwPwD+GsB3Ev9/xrwoJ0dUlvVhJkUnT5ocDSEEALggoKuAeraaSRsCJ7e3w3v//Sj5+tfNDsmSyn/2Mwx873sFkQDWkr5abzhCRqO3y8lTxZU0cyZQU6Pfjkaj+vJV4GIPw5KSEsOPyWUZF973PrjuuguuDBXF46VeuAAh0WMxdvAgij7+8Ql/DkLIBMmhBdLevXsnMRCSC+14hVpAGKcd52mtH/r6+lJ+rn2eUkU1IdZWiGdr1QB2MsYOAtgN4FnO+RbEE78bGGOnALwrcXtK4aKoJ4Bt115rcjSEEAAAY2DUAzgr7cCw7p57EDt4ENLcuSZHZF3Om26CWiBLvLUD/eeffx6bNm0yORpidfnuASxWVqJo5kz9djAYREtLCzZt2oRNmzbpJ/8ej8fwYwaffhoAUPyFL0xssADKfvxjKIlVC3J7O/oeeQT2FSsm/HkIIfmnHQdpVcDEPNQDODfaZ7cgCCgtLQUwvG9+8jaEEOsquApgznkTgCUZvt8D4Mb8R5Q/Tq8XTFUhhEKIbd9udjiEEMQrgHOpALlUJQ8KG/j2t1H98ssmRmNtTBShdg3rYmRJ6Qf6XV1dqKqqMikaYnX6CWKeEsDMbgeShjPt3Lkz5efnzp0DcDEZYETfww8DGH1g21ipoRCU/fvhWLECPBiMx0bJIkIsy5bDwKuKigq0tbVh1qxZkxgRMYISwLlJTu7aE695e9prnxLAhBQGeocWkGAsBibLcLW2giX6wxFCzOX2emHPIXlwqdISwIF77oFz/XrYqAI4KyVteZ0VpR/od9NwUjKKfFcAI5EA9nq9GX985MgRAEAgEEj5vhoMIpThItXQU08BABpaWiY40DipoQED3/gGAIAPDQEAmNM5Kc9FCBm/xmnTAAxPhmXiTpy7uVyuSY2JGNfU1GR2CAUhObk7UvJcVVWAc2oBQYjFUQK4gKiJFhA2vx8ljz5qdjiEEACCJEGORFIqXMlw+oGhKKLi1782OxzL895/Py68731mh5FV+oG+tjSQkEy0E8Z8nSAymw08FsPy5ctH3c6ddlFd7e5Gz/33D9tOq/6dLI61a+H77GfjMQwOTupzEULGT0uGGfnsiyVWI0hSwS3AnXJsNhuAeFU2yU5LAA8ODurnO2fPnk3ZhnMOMEYVwIRYHL1DCwiXJAiyDN/x45BmzzY7HEIIgMGhIUBVEYlEzA7F0jjngKoCiYNuMrqiBx9E7MQJRPbvR98Xv2h2OCNKP9C30b8vGYVeAZyvE0RJApflYRPJ01s+pCcBeCg04kO67rhj4uJLwwQBPPE3Cr/yyqQ9DyFkgjAGxpihIgAtYUYJYPNpxy5OWmFhiHbxVlEUvdo9+aJHNBpFR0cHgNxaKhFC8o8SwAXk8mXLwBQF5a+/DvvSpWaHQwhBvAcw45wSwFlwziHEYpQANkhMJKS677oLoZdeMjmakaUngKkSnoxGX0a6bVtenk+rNGaMYf369QDiyZdbb701Zbv0CxfaEMahP/1J/57c0gLbwoUof/zxyQxZF/i3f8vL8xBCxsdoAljjcDgmMRpihHbsotIQZ0O013d1dbWe4E1+Hb/wwguQZRkA9QAmxOroHVpA3D4f1l51FYD4skZCiPkqa2oAVaWeV1lwzsFkOd6Tkxji+8IXACQGWVlU+uueTqbIaPQWEDfmf2avx+PBxo0bceutt4IxllKllN6/s/s974Hv4Ycx9Jvf6N/rXLsWsWPH8hYvc7lQkza0jhBiPYyxrJ999NloLVqSkobAGZPcAzjb347OhwixNkoAFxBmt4PHYvB+7GNmh0IISRAkCUxV9SvfJDPOOQRZpgrgHPj+5m8gzZkDx+rVZocyIvvPfpZymyqAyWj0E0YLnCAmn7xmal1S9MlPQpo+Pb5tZycAoO7EiUmPS0syM6cTUmPjpD8fIWTsmCBAQPbPvq6urvwERAxhidYdlJg3JtMQOPrbEVKYqAlRIbHZwHt6oLS2mh0JISSBiSKgqnQglIWqqmCyDEZLH3NSs3Urej//ef12zwMPIPT88wAA+/LliO7fD88HPgDmcCDwxBOQ5s4FD4ch1tTAsXIlYu+8g/CLL8Kxbl18+927wSMRCMXFYE4nYk1NYJIE5vVCmjYNcnMzhNJSCCUlYE4nwq+8AuZyQX777Yzx2QDghhv025QAJqOJRCKABV8j6RVLRZ/6FJgkIXbyJABg4Ac/AAAIacPiJoM0axbks2chzZw56c9FCBknmw2ComQ9BtQ+G6cnLioR8wmCQMfuBun9+xOJc0EQqHqakAJFCeACwmw2KF1dcKxZY3YohJAEJklgnNNBZBZ6CwgafpIzsbZW/1pL/gJAdP9+AEhZpi6fOgUAUM6dQ3TPHv37kR07ENmxY9Tnib755rhjpfcBGU1TUxOYokC1QI/AyspKdHd3Axg+CCj03HMo/tznEDt+HK2JKtyqzZvzEhdzuTD4y1/q729CiHUxhwOComS9+Nne3g6ABsBZCeecVu8ZFIvFUm6PmAC24AVeQkgq+hQqIMxuh3rhAqTZs80OhRCSoLWAoMTX6DjnYKoKRic/uUscUPNwGADQ0NJy8UfhcLyvMudgohj/O+dxeX3L174GqCqQSOhRBTAZTVFREXoHBuDy+fL3pCO8JpOTvslJGf9PfgL59On4jURyoHbvXohVVZMXYzLOMfTrX6Nm+/b8PB8hZMyYJEHk3HACuK+vLx9hEQNUVcVAYuAnGZ2W7A0GgwAAURQzJ4At0N6JEDI680swiHE2G5SeHgj5PHEihIxKoBYQhmgJYCQNXiK5OX/77XCmDc9iTieYIMRbkSD/wzf8JQpY0kkAvQ/IaLxeL5gsQ0yruJ1UI7wnOhN9fdP5//EfIU6bBgAoevBBOK6/Pn/JXwDq+fMAoMdACLEwUUQ0FILf7ze0+apVqyY5IEImnnZsWVpaCmCUBDAhxPIoAVxAmMMBtasLQnGx2aEQQhKY3R5f0kyJr1FxzgFV1ROVxLjo3r1QurshnzoF1+23mx1Oiv+4Z29KApgqgMloFCV+wSCvCeARjLT013333ah97TUAQPHnP4/Kf//3fIaF6KFDcN11F+0rCSkAzGYDT+xLtCrf0djt9skOiZAJlzwEDohXAgcCAQB03EdIoaG1uAVE8HoReeMN+L74RbNDIYQkMIcDrL+fEsBZqKoKxjm1gBgDx+rViHXHqwKZFU8e5RiAeEKvEN8HmzZtMjuEUd1xxx15r+yeLLIsgykKBJvN7FDQ2NiI5ubm4T8wuT9x7NgxeD74QVNjIIQYJIr6RdB9+/ahrq7O5IBIrhRFgUgX3EaVngBO9sILL+hfl5SU5C0mQsjYUAVwAWEeD9S+PojV1WaHQghJEBwOCLJMS6Gy4JwDikJVbaNQuIxHWm6GylOTqEpgEH/nfRjlv/st3HfeaVJ0mQkqA1cvDgcptEqQ9MEmVrQ5T8PH8qGjowNMVSFY4ELGSBcrxPr6PEeSynv//RApiURIQWCJORCjOXfuXJ6iIWOhVbKSkY2UAI5EIinHUVV5bJdECBkbKsUqICxRMSO43SZHQgjRCA4HGCWAs6IewNn5lR4AwJfO3QoAuNF3Hw4Et6LnAx0AgEcbvwm0jHh3cwgA+MWD/0KrAI5Go2aHkFVjY6PZIUwI7eIAUxRLrASYNm1axsSMNmzRLCVf//qIP3uk5WZ8t/GFEX9OCMmzxByI0YRN3qeQzCRJgizLePvtt3HllVeaHY6lacd2WqW0w+FAJBJJOeZbvXo1cOqUKfERQowz/wic5KTyT38yOwRCSBJ/OAxBlnH8+HHMmTPH7HAsi3NeEC0gYmoEErObsuS+I3oGN/ruw96hFzGgdONl/28zbscgYJX3FuwOPIc622z4xHKcCO9GmVSLqBpCUPWjWKzEgHIBDfZ56Fe6cI33L8ChIMZjOB1+CwwMQXUQfqUH81wr4BPK4Vd7cD7WjBWeDRhUenEqvB9eoRTvRA7AzpxY7L4WJ0J7IDIJq713wK/0IHjsGKBeTKIWWgWwdvLS2NiIOXPmwOPxQE0MdZRMfq329PRg165daGlpQVVVFWpra02NZ7ySE8CwwH6gvLwcK1euTFmyqnR2IvDTn6Lky182MbJUuwNbsMLzLogs/jdrjhzDdMdCk6MihAAAJCmlD34mWtLs6quvzkdExKDLL78cBw4cQEVFhdmhWJ5W5KK9luvr69HU1JRS/FJRUYEBU6IjhOTC/CNwkhPHypVmh0AIScJtNrARhgmRiwqlBcRXW+/EMveN+KuKL+T9udtip1Fvn4ObSj4EAGiPvoMfd34C5VId3n/dTlQffAs2t1ff/u6yT4/peW7GX09IvADwUuenEAsNQokPhi64CuDkqhaPxwMgvsQxU5+7fEvuSbh3715s3LjRxGjG79lnnwWQqADOZw/gUS5KpCfVQ1u3ovT735/siAwJKP3YO/Qinu9/AgGlF5e5VgMAHj//WaoCJsQimCRh2eLFeL2nB84Rhlu2tbUBAFwuVz5DI1m4EytqC+3CtRm0oanahXHt/4XQRosQksr8MxxCCClgrpISCIll5HQQOTJ9CJzFE8CVUgPcYhFiPIo3A8/hjcGR+6+qfHjVj8pVqFyBkuFnMo+O+hqxMwfmOJfqt2tts1Au1eI633uASASSy5PjbzP5bBU1UOwXDyUK7T3g9/sBWLNH41QdSmPVVjCcc/R/8YsQiovNDgUAMKj0YuvA7wEADCJ+1PlxbCz5OFZ6bjI5MkKIThThc7ths9lGTPD29/cDiC+bJ9ahJTFlKuLI6lSitYN2XKL97ah/MiGFhyqACSFkHHw1NRAS/d3279+PFStWmByRNWk9gK2eAL7cvQYd0TP46rmL1ZZP9/1L/ItJ6r/7F6WfwDN9j2OWY3E82ZvAGMNDtT+HAAHtidtWIzAJnMnQIiu0CmCtAmjmzJkmRzJcegI4Go3CboHhaWOhJUAAxFcC5LMC2OD7RmlvBwBI06dPZjSG7Rj8EyI8CADYMvBLAMAK7wbs8MdbgQ0pA5CYDQ6B5kIQYhZms4HLMgRByPr5Z8vnfo9kpR1TnTx5EvPnzzc5GutKTpBrVe7a8UlPT3x2hRVWTRFCjKEEMCGEjIO7ogL23l4AQHt7e04JYDlx0gDED0SNJvg45ynbao+Ty2PkG+ccUFXL9wAWIKHWPhMnwrvxrWmbISY+Jlvbz6G6tirRh5MhqA7AyTyIIQoGBgk2cHCIzIYoD8PBnFC4jEG1D3bmhFNwQ4AEBgYVKlQoAOf4auudeKbvcQBAlA8fFCMxa58w2u0uQL3Y9S0cDiMYDOqJVavTTtitmFhNP6EKBAIoKyszKZrx2bVrl/61yLklK4DVnh6UPfYYbCYnAgJKP14a+A/sG3oJALDauxGvBzbhvWWfg0vw4lR4P15uudgfnNpBEGIiUQQUBZFIBJFIJOMmJSUlCIVCeQ6MZGN2n/9C8fzzz+tfp1cA9ybOfwr12ISQSxHt+QghZBxErxeOxBVwzaZNm0yKJs6KvUJVVS2ICmAGhm3+PwBITb6KTIJduNjfr0iMH+zaMHxJp4sleskyEWVCzbCfi4n/wICPVn0XW/p/BZfgxcnw3hHjKv3e98b2C00ym+SAymVo/6rt7e1ob2+35GswE61lhRWrV9JPTq16cceI2tpatLa2AgB4LJbfCmCDwi+/DNuiRWaHgW+0vS/l9p2l/w8RNYilnvUAgKu9t6Ol9zgA4BrvnXmPjxByEZMk8KQKyVgsNqzSNxaLUbLRgjK17AiHw5BlGV6vN8M9rEu7mJ0+wFaWZfj9fpSUlCAajSIajcLj8RhqMRWJRPDiiy9m/Jl2/6GhIQCAz+cDV1UwCx5LEUJS0acRIYSMAxMEOOfN02+Hw8OrOPPt6NGjWGSBREay7u5uQFUxWCBVMJ+q+UlenmeOcyn+pubHiKihjBXAGs9735uXeHIl2RwAV1BTU4POzk79+9pFkEWLFmFwcBCzZ8+Gw+HA4cOHUVxcDI/Hg0OHDmHZsmWQZRmKosDr9SIcDsPj8cBms0GWZQQCAVRWVgKIJ2k55wiFQnA6nRBFMaUaPhKJwG63Q1VVhEIhOBwOCIKgn3wnnxRp99MmWFsxAZx+grZz5079a4/Ho594AfGlxdmGsRQXFyMcDkMQBCiKgtLSUkSjUYRCIaiqimiil3muenp6UF5ebnh7pqqABZMhQmkp7MuXmxqDyi8uIb/e91684v8vCEzE+5KGUq7wbkClbRr+s+c78IqlZoRJCNGIIpBU+ev3+4ftD2OxWMGsirmUJF9U7e/vx44dO/Tb119/PYqKiibtuSORCGKxWEqimXOOSCSC8+fPw+124/Dhwymf81aiHU85HA5EIpH4QFVZtuRnOyEkFb1LCSFknKqqq3Ei8fX+/ftNjQWAJZcaFhUVYVBVUWSRAUuj+fuGP8Mh5Hdat0NwwYHCmxAuiDZcfvllaFyyJCUBrDl69CgAoKXlYgNlbSI6ALzxxhuTH6QBVqyuHS2m9JNCI5O4BwYGUm6fP39+bIGNU5HLZclWMOrgIASfz9QYwjz+76q1dXjF/18Zt7MxOwaVPgypAxl/TgjJDyZJiMYUqJxBYBy7du3CzJkzcfnll+vbRKNRGgBnccnJXwB45ZVXsHbtWpSUlIBzPuJF4u7ubsscx0ymdevWpSSrtQvUWtsTp9MZr4S34MV0Qkgq6x2BE0JIAetJageR72XwTU1NOHr0aOrAJYsQBAFMVWErgJOgfCd/C5ko2KDIQ5asoM1FocdfKFatWgWPIFiySohHo2Am94KOqsZWkHjFEkR5GK8N/hl3lv6/SY6KEDIiUcTXmtYCAK4s3wmvLYAzZ87oCWDtYt3g4KBpIZKxSV51cynLdC6T3tLE6XSC9/dDyNBWgxBiLdY7AieEkELDORoaGvQelwCwZs2avIehLeEOhULDBsWZTVXVghgCR3IjiDaoqjzstZZ8wsA5x8DAACKRCILBIGw2Gzo7O9HR0QFRFKEoCpxOJ2bOnImOjg709/fD5/OhqKgIiqLolcW1tbUoKyvT2zZ4PB4MDAxAFEX09fWhq6sLQPxERFEUSJIEu92OgYEBlJeXIxaLwe/3Z/w9jPTDM0tHqA5Vzk5cu3a1PmhFe3+rqmp4+KPW7zj5fsnGur9ob29HXV2d/viKooAxBkEQoKoqenp6IMsyqqqqIEkShlRuyf1A6NlnUfzww6bG8OLAk7jSc6t++9M1j2fczi3EV1Ks970/L3ERQkaQtC/b3bMW62u2pPx469at+Y6I5GDhwoU4duyYfnvjxo2mz/HIZMaMGbDb7Zg+fTqcTmf2OxjAOYeqqsPaaRmRfswkCAKi7e2InTo1IbERQiaP9Y7ACSGkAGmTcDVmTMSdN28eTiUOvo4dO2apPsDaEDjBgsOfyNgJog0xJTZqBS1jDCUlJSnfa2hoyLjtnDlzcnr+urq6nLZPp53oWTkBfHxgMY4PXIG7yi5Wp2onarlULief3E1GxbP2+MmVQaIooqqqSr/NOcdXO2/GN+adg9X2BK477jA7BHiEYix0rdZv19lnZ9xOZCI+W/MzHApuz1dohJAM+uX4qqa/fU8U33jKDs4BxjIPgyPWM3PmTD0BfN111435cWbNmgXGGGpqauB2u+FwOCDLsqVfA4wx/dgn1wvAGYcaMgb7smUTERohZBJRApgQQsYrUe1mtuQYmpqaUFJSgv3794MxhnXr1iEcDqO1tRU2mw3V1dXw+/0IBoOQJAmNjY2QZRn9/f1wuVw4e/Ysuru7YbfbUVJSgnA4jOrqagDQB2NIkgSv1wtRFBEMBtHd3Q2XywWn04mhoSFUVVXh0KFDCIVCGBoaQhnnEE1eYk0mlijaEEmrAJ45c6aJEY2NlRPAMzynoUolAGrNDmVcAmGORJEw/nSqHB+aP7nP91jnZ/DJmh8Zv4MWnEn8cg/szIlGx2WGtq+xz8Cx0C7IPAqJ0X6VEDNciMarMX1eB2Z6T2Jf79Wod7egs7MT06ZN07crxM/FS4EgCMNaHGzcuBGxWAxNTU3o6urCunXrcOLECcyaNQudnZ2orKyEK9HqQFXVEY//rZz8Ha9MCWAeDEJMnCcQQqyLEsCEEDIBrrvuOjz77LMAgNtvv920OKZPn28mK/UAACAASURBVI7m5mYAFwfScc6xfXtqpZi2jaapqSnj40WjUX1p/UjL541qcy1AdcQJK8+t5zA3CVRoBNEORU0dQJaxMsTirJwA9sdKoChetHSrcDsY+gMcJV4GUQBOt3NMr2KQFUASgXCMYzAIcAAOG6AogN0GlHgY3A5AVgBZBZy2+DYCA2JyfJtACPC6gL4AUOQCQhGgf4jDLjFwcKhqfFuvi4ExoHuAo6yI4WirA4KLo8gFiAIwFAacSflIlQPNXRxPvKjgwxtELJZa4HVUTPrfrSV6POV2VOaQFaCth2NunfkX7NI9dv4z6Fe6sKHkg4bvsyfwAmI8hptL/noSIyOEjISz+L5EFEV0hOoRVtwoky/gwIEDKE4aepvr6hZiLpvNhvnz52P+/PiVygULFgAAGhsbU7azQvGHGZJ/b5vNBh6LYeh3v4PnvvtMjIoQYkThnaURQogFZaoiMMPll18+LLlrFa/Xvh+vvwn8cLHZkYyMwTp9kwuB1gM4mZWTqSOxcsw+Wz/ODlXgh39WzA5lBD48f1DOvhmAX76kYLZgh1PN39+7SyiDj3M88quLMd60jOPFt1QAwA8/Gq/SkpkIReVQVMAuxfcDR5pVtPdwrFkowO0Ye59kIySWe7XYPeUP4d+6vkAJYEJMEoOE/+d+GYzdgnp3C94ZXACBxffVr776qr7dRPVtJcQKkj8LY7EY+NAQgv/93/B++MMmRkUIMYISwIQQMoUIgoC5c+fqvYAvu+wy+Hw+HD9+HLW1tWhoaIDL5QJjDH6/H4ODg9i/fz8WLFiAkpISuFwuvPPOO2hpacH8+fPx9ttvpzz+qlWrUFpaCrvdDlVV0d3djbfeegsbNmxISaKFw2H09/fD4XDA4XBg69atKA53IFpUY7kBdWTsRNEOVUmtAD5x4gTmzp1rUkRjY+UEMADcv7YTly9ogMBYxveP9r3kn6VvN9r7TuVcv/Qx0jYj3V8bAqdto9G2jcnxuvqTbfEq4IVowcnw5FUA7x96GVe41gIAToffwuOe+zB7czwh84W7JYSiHP+y6WIyvbOP42SbiqeLPgk8kTmR/fy+eLL4y++VIImA1xmvuJ7I/VhA6c/5PrMcFr6aRsglQIYISYkAADau9uGtAy/h7NAsk6MiJL94Ygg1ozZvhFgeJYAJIWSKWbBggb5cTZM8iEnj8/ng8/lQX1+f8v0lS5ZgyZIlAOKD5UYiiiJqampw6623DvuZy+XSe6QB8Z5qws/fwP/GavHQL2R85CYRi6Zbb+kctYDIjSDZofLUytRVq1aZFM3YWb1txWVzaiAkko2Zko4sw8/StxstWSkYSGQaSXZm2saWqKa9fDoDoOAK9TRC5RM/KOZfzz+E5Z534aWB/0Bn9AwA4I3AswAuxzudHMtnM9SWMQAMK+eqeP91Ir75Bxnf/ePI1ctXzWP4q+skPP26gu1HVPzDf13cdu1CAXevmbgLB3Ocy9Aeeyen+zDGcIPvr/D7C9/BPWWfhU1wTFg8hJDsZIiwKfHk1/Tp0zF9+nR8+dchzMYp2O12RKNRLF261OQoCZl4119/PV555RXccccdUNraAABcVU2OihCSjbXPeAghhEwZXAUgAFcvYPjFiwoWTlMhCMDRZo7KYqC2jMFpi/cMPXSW46r5AlovcNSWMuw5pSKalqdh7OLcpiUzGQ6eid9Yv1hAey+HXQI8TpboS8oRigKDIY5iD0MkBthEoL2Xwx+MP8b0KoaFYx8CfUkSRTsUHv+HWb58OWRZRk1NjclRGbdw4UKcPXvWssNaNm7ciOf2TK1p8pIcBpMm/uJPVA0jrA7BwVzoks8BSK1I9rouJqfvuz5++Pu3f2XDZ38er2B/KPBLTPvsA/p9kpPZf7laxK0rBHz5SRlz6hhOtXPsOaVOWAJY4TKOhHai0W5sAFwyASIOBLdhQ/EHUSHUZ78DIWTCyFyAKEdSvheKSbj9jjsMXVgjpFAVFRXpre+0CmAaAkeI9VECmBBCSF4oHPin+2QwpxNvnJBx7NzF5EzXANA1kFp9u/1IvJKgqTNzVW5SbkdP/gLA1kPJFQjD79vWk/nxmrs4ZkYy/oiMQLDZoaoyLvyf/wO+dSumt7SYHVJOZs+ejdmzZ5sdxqjYFBsyI8hRgE3s79QZPYtBpQ/P9f8CAHBBbkOpWI0Lcpu+zV+uzpysXTmXYe8pDnfTEQAjVzo77Qw/SPQLDkc5/vjaxPVk/vK527HcfSPeV/GFMT/GkDqAClACmJB8iigCQt/9B+CjH9C/V+oFXj2s4obF1m4tRMiESSSABbfb5EAIIdlQApgQQkh+cA5REsEEhu9/RLJcdczhsyretuqcLYsSRBtULiP8yisQMrQZIWSYWAxtfcKE9gLfO/QCBtVe/bZHKIZHLEZr9CQqlF5cEMtGvO9910t43+xziBSvM/x8TjtDhW/8sXPO8Wz/zwEAxVLluB6rJXIC0x0Lxx0TIcS4mOhA2Yc/kPK9/3uThL2naCk8uXTwSLx6gtGwQ0IsjxLAhBBC8kNVgcSwLaslfwHAZQdiI7cDJRmIkgOqKqP4y1+G0tlpdjhTkvXeKWN3zxoB2ALMqI63YXFO0LyYEjF+8eEr9b+Di3nx1dY7UY74YLrL1Xew/gMjJ4ABIHb8eLynTA7G2y38kZab9a+Xu2/ELSX3j+lxGBiucK+DxKZOmxBCCsXOoo9jtTO1dUuFLz4oMipz9AeAqpKptBcnZDitBQQhxPqm1rpCQgghlsU5Byy8nD0cA3oDNAQuF6JogwoVPBbTk/uEjGTNwvhr5IKfo7Nv7O81RU29r8gkfLnut/CJ5bAJDnxr2mYIiTYTfZIXHiE2+uO1t0NqbJyQWMbiPeWfG9f9HcyFpsjhccdBCMlNzDm87ZFdAjbvUfHIr2R8+yk5pRc5IVORGgiYHQIhxCDrnokTQkihoIN7wyZqyfdkqCpmKYOiSHYCRKgCB2QZbAoNKiOTa9ksAePJm37uCRl9SRdrQmoAHtGn35aYDVd77wAAzLG3gYdCoz4ec7kg1ufeP3cozPG5J+QxJYHX++7VvxbG0ROZg6NILEWNbcaYH4MQMnEYY7hiBsN71oq4ah6Df/TdDyEFT2lpge8LY+9hTwjJH0oAE0IIIQAkkUOltn05EZgIlXFwRaEKYGKY2wmExrhi9Hx/PNm67/TFN6vMY5BYaj+JZZ71AICAwwUeDI76mGogAObx5BRHew9HRy/HokaGzz0h438PKDhxTsVnfx7Ds3sUDIU5QhGO5q7499KrAAWI+G7jC/hu4ws5PW86xgQADCqnBuaE5FOMj7wT+/AGCddcJuCKGQLOj2O1AyGFIPb22/Dce2/2DQkhpqMewIQQMl4WrmolxomiCq7SddFcCBDiFcCE5MBlZ+jqH9vrpnsgfr8jzRzvWpp9+xm+vqwJYB4MQsgxAdzRy/HYswpmVMX3/8/uuZiQ/t8DKv73QOrVpId+EW8w/u2/luC0T9xnRmvkbZwI78YS9/UT9piEkOx2+p/Ouo3XBZxq55iX+wIDQgrG0G9+g5JvfcvsMAghBtCZLiGEEAKAMxngVMWaCwEiOHi8DQpdCCEGOe1AODq2BLDLDnzgBhEr5xp7vSnuKHg4POo2kV27wOy5TaQbTCzrvn+DiPVLBHzt3nhNxTc/KOHy6QwfuVnEPWsEPHCLiB985GK9xZeejPcE5eMeIxfXr3Tj7rLPIspH/x0JIRMrpA5m3abUy+CaoGGXhFiVNHeupVu8EUIuogQwIYQQAoAxBeC0MCYXWgsIQnLhtMWHLo7FYAgo9QL//Zqqt1VgyHziWRpbjNNlb2edUG5ftSrnOB64NX6xyOdm2HiliFIvww8/aoPHyfB/b5KwqFHAmoUiFkwTwFj8Z99PJIIfeiKC4y0Tc7K8sfTjWORaDYXLE/J4hBBjIjx7c1+XfeztbggpBJxzmoVCSAGhBDAhhBACgAkKQC0gcsISLSAOzWjHP9wzvl6m5NJhkxhOtY/thLGjl2NGdTx5+uuXR+97e/6NT6LZ0wwlGhn9Qcdw8tpQkXsCV2AMD24UASYjFJagco6oPL4T5znOpfCIxWiwz4XKqYk5IfkypAzApvpG3cYmMcjUnptMYUprKw0BJqSA0JkuIYQQAoAzBZxaQOREYAI4A15ddBqeMK1zJcb9f/bOO76t6u7/73PvlWR5x47jxE6cRfYgJISwSaCGsFdbdmkZbX+l5Sm0T2kpFEoplJkHnvbpgA7KahlllLIMlLIChISdhAxI7NhO4nhbtqQ7zu+Pa8uWLduyY1uSc96vl1+Wru69+kq645zP+Z7Pt0PEHTDCFVKBPos2SimhtYjp1gz+Z8Jdg3uvPvAablbvQJk2XuOac6CmweAH91pc9WcLR0psR7Jt1+AF3Ex9DG1Oy6C3VygUA2Oidxam1tTveio3UjGaabnvPswNGxIdhkKhiBMlACsUCoVCAUgshLKAGBRLN5cwq7Iw0WEoUohtuwYni3TIxrdfbPQpAJfXSEDwqe9jGo3+RZqRxOezwOm81jy/1qGuGe56evCpghlaNgGnYSjCUygUcRC0wqTXHdOvn/dgr3UKRSoQeOABjGnTIpZMCoUiuVE9XYVCoVAoAEfYSgAeJAKBruwzFANgyrjBZQC7wi7omqCm0X0cS4B5+h1XHa7V9/S7T0sbWeuEsAwyr9jPofN1djVInlztsKdp7zrPEskuczvjPCVDFKVCoegL07aZnDkRR1T1uV5jQAljitFL7vXXYy07kp89YPGLC5QVhEKR7KjemkKhUCgUgC0tNDUuOigczUF3VAVoRRzsZZZQcX7ncZbp7/2Y6ys7uCsNVg23nvkSleEtexXXQKgxdzC2+AtmT9Q4cp7bFK+u27vvxSfSqQ5/MRThKRSKOLAc8GgGlt73xaY4X2Dupde3QpGsyGCQJtJpCbLXnvYKhWL4SSkBWAgxSQjxbyHEeiHEp0KI/2pffr0QolII8UH73wmJjlWhUCgUqYUtLVAZwANHSmxNoqkMYMVAGMR4gWlJ1mzuFFtmFIv2XfXcmdOtH2pJM+Y+/7r7OgCqwlvda8AIkKalM8u/FAAhBFeeZrCzvj1Oe3Ad6AJPMS83PThUISoUin6wHfBqHsw9O/tcb/oEjUBwhIJSKEYY2dYGXh9FeXDVny012KFQJDmp1luzgB9IKecCBwOXCSHmtr+2Skq5qP3v2cSFqFAo9jWEpiFtVeY51bFRGcCDxRESTaoMYMXwsrVa0tza+Xx9ee8WELYjmT+585j8e+2tMfepOXDixoN4rO5OKsKfDW3AvRCWQbwiLfJ8UoEbZ046/GtNp8AdMuPvSBd4JnFM9nlDF6RCoegTR0o8mofmZ55EmrEHmADSfdAaHsHAFIoRRAaDmJoXr+Hex7ZUKwFYoUhmUkoAllJWSynXtT9uBjYAxYmNSqFQ7PMYBruOPTbRUSj2EmUBsReo4h/DwqgsqiIGP1BQXiM5ZVln03VeiSAQMtGE3mNdxwGtSyt3p7kt5j73c+ZQZBYB8Hjt/ww6toEQdoJ4NV+P5WNzBK9+3CkAX33fwDKSY2VCKxSK4cFxwKt7sD0C+kgCaAhIPvx8ZH3GFYqRQloWe5rde8/siYJdDaOw3aJQjCL67emWlpa+Fue+gmVlZSOmgAghpgAHAO8AhwHfFUJ8DXgPN0u4fqRiUSgU+zbC48HavDnRYSj2EltaqgjcYBBCCcDDhCNBG2WaXtszz5Bz5ZV88LnD8Ut6Crd98cZ6hytO6zxHC3IE21t2YOo951fbDugCxnumstP8gjm7JsGEnvussDYzx54PwG6rnHt3/4RLxt08sA81QEwZwiOiBeATl2rMn6xxy2Odom93G4t+EQJHOmgipfI7FIqUxJauBYR24P5I2+51+GXuJI2KPeoeqRidtL3wAg/nfp8DZwgMHcK9J8MrFIokIJ6e7lLg2/2sI4C79j6c+BBCZAKPA9+XUjYJIX4L/AKQ7f/vAC6Ksd03gW8CXHbZZVRV9V21VaHYF6mrq0t0CCmHbGsDUNeUfgiHw0n9He12dhJsTY8ZozoveiccCiFxGwLJ/PumIpYNLS3pVFW19r9yghjoueEcdRRVVVVML4j/c32x28PkApPmtgJaG6tpa3KXb6/ys77pCSYVBKhqjT72cv3ZTMoNcoxzLXdzEW1PPEnVuEsA+Nz5gGnaIgDyyg3MXQGWipNYI59hc3DdsB/Hu51dpImxWKLzfeaOg7paDcjnugeCXHxUHVAwoFjCjsW2li2kicyhD1oxINQ9Y/Szqy6Mz9fKuP0XUl1ZiciMfd4FTUHlrjQmpLeNcITJhzovRh+3nfUcAFU1YWqaDUxbMH/8rgRHlXqoc0MxUsQjAL9VVlZ2X38rlZaWnjsE8fSLEMKDK/4+KKX8B4CUcleX1+8Bnom1rZTyD8AfAK6//npZVFQ0/AErUoLnGv7I8bkXJzqMpEGdGwMjUFhIPep76w+v9/Ok/o6a2yrJqPX3GmMyx55ItHQDI+iAx6O+oyEmbElyah2KinITHUqfxPu7Sylpysoip6iI7GqbCRNyEH1YQjhS8ul2yWNr3OnVM4sFxcWd73VigeTdV6dx6sLDyDUKoradWm2zYokryFxy8A42XXVIJM67yr/BT8Y/QK5RgP6FZNLCQ9lv0jJyGsfwUuP9NI4pZ47/4AF9BwNhW7OfiemTyNSjf9cJUsK/LZradP72jvt5BnJOVbcUk5OWRb4RI9VZMeKo6+HoJjvgZWLeGPy5WUwYNw4tN/Z1WkrJpj0ORUVjRjjC5ESdF6MNN+V3V5MH24Gx2eo3Hizqe1OMBP3OESsrKzumtLT0nDjWG3b7B+H2Ev4IbJBS3tlledeW7unAJ8Mdi2L0ELCbeLXpkUSHoUhhzE2bAJBhVeUjlbGlrTyAB8GerABOvXJdGg6k3CvL3OQjHEZ4vQB4dDD7qZ25Y4/kT2U2R853m6uTx0V/GT6PYFqRhU9L73M/2SVzeW1JhRuC49pF3Fx1PlJK9mQ2o09wm5GlOecD8Jea63rsI+S0cVX5cf18wPgIy1BUEbgOuorh1YM4pTL0XLYGP9yb0BQKRZxICWkeHWkIpNW7X7cQgvDA7LwVipSipEBgO/DfZxrkZoymRotCMfqI1yTs98MaRfwcBlwAHC2E+KD97wTgViHEx0KIj4AVwBUJjVKRUuzqpTCMQhE3UqLl50esIBSpiY2pPIAHwfiGbLRx4xIdxqhktHkAy64CsEHcosjnOyUF2VC+u6ePpq0F8Xbz0w0EJV3XLHzkUQCCToBaq4r5xjJ3W0w2j6lAZGRE1p3rPwQAR3YWbXqk9nbeC7wQX7BxYMowhvDEfO0nX3GvQVMKRXscMu5igLl6AY/XraI6/MXQBKpQKHrFtCHN0PnjgS/0WQQO4L3NqgicYvThtN+bOrz5M3zu/deylee1QpGsxNvTTYruh5TyDWLH8uxIx6IYPVjSZD/fokSHoUhhcq6+GmP6dFcAzsmh7fnnqf3mN6PW0fLzMWbMIPz2233uK+2445BtbYReew3PokXY1dU4u3bhXbIEY/JkRHo6gQce6HX7giefxLd48ZB8ruHkqvLjuKWkU1CRUvY5FXwkWN38DBnaVxIaQ8oy6lJVkwPHgdFUz6urAOzzCLdYTM9E2AitIfd/Tjp8ugdqmmJ1Km10Ed2cveZ+V1nuWmTO32Zw3Y4z0NCZ89QeDgg4NPygBgCR3plBfGHB9bzW9Bhh2cYfd/2U8vAGANYGygCGpkiclGgidgG8TD8cvVDjlY9cwci04Md/sbj9YgO9n9GAAs9EACrDm5ngnbp3MSoUij5pCYKhudce6fQt8BbmqvujYvQRCMKC6teBoznhQI0sP2T6Bdt2SfYrUse8QpGMxCsA66WlpSvoQwguKyt7ZWhCUnSluVVi2pCXpS6iw0Wr08yW0AdJIUDty0gpeaTudpZmHMfvd/93lDiY7AivFy0zE6e1FR1oe6Xn5dCprSVcW9vvvoIvdH5u84MPIo/Da9cSXru23+1rTjuNieXl8QWeIBzpZsoM1XTqoeRgW00gGSjh99YiLRPfwcPnmbqvIhldGcAtf/5z5LHXgFA/1cLbQuDzwPbdkm+foMfMAG4IxJdppDnueg42R961izUXjqWs8a+MafEjJkWr0D4tnUa7NiL+djA77SA2Bt+N6/36Ijo/OZp0n+DkZXpEAN7e/pmb2yA3o9fNANCFwXcL76bRrtnrGBUKRT9I2Wkb1YcFBEBbWNLYKslJH0UXdMU+T8iEiblum770AHdQ8+BZGlV1kv2Una1CkZTEKwD7cL13e7trSWDakESkiOJnD7oNilWXxp4qGIsHX7U4b7maxhwvIdnK4VlnEJQB/Kpy9ojhSIc7q7/JD4vuBaDOqmZd4CXWBV5KcGSDQ6SnI1vdivbGxIkUb92K8HiQpglGe4ZIIOBONbYsd7qgz4e9cydaVlZkuQwEEDk57j6FiEz9jTwOhRBpaT2mBHe83njDDSP4qQdHq9PMeM9Udppf4BE+5vkPYY7/EFa3PE26ls36ttUck30eFeHPaLEbKPbux/bwekwnxBTffN5vfTlqfxo6Dr1Pv+x4rxLvHMrDGxCIKAFGoFHkmYYuPPidgl73o+gFyyTjzDOxKiuxd+3CqqjAd+CBiY5qVCCd0ZVY3frYY/gOPRSANC+ETEmspuV/PrY5aoFOa0hy9VcNsttFk1nFPfeZ3U1Q6c0u4fxbvIQ/+oiXrp6AEZYEZxbySeurzGws6DH46xE+7qy+FIBxnhKOzPoyleHNHJNzHjdWns2mtrXM9C8Z6McfEAsmCz7eLvnts+617e6nLX52jofVGx1mFAnGZsc+MDL1XKpNZQGhUAw3mX7RefXqxwJi4RSNz3ZIDpo5ii7oin2ej75wqNWjixtOHS949j1leaJQJCvxqoSBsrIyJfCmACFT8t5myXnLEx1J6hB0AuToYwk7QfyaEoBHip3mF9RYFZHn77VPrz07/yqeqf99UmaHdnB87kUszz4rapnw+yMCsNPUhPC4gzYd/wFEZvvx5fG4f4AxoUsNS48H0a2KdFdhQggBaWk9lnd9XWRlDfJTjRwBp5EDMlawPPt3UcsXZSyPa/uz+dEwROXyXGU/ValGmBfX2ZQUCGZPSl4fAGP2bLQxY6CykvCHH9J0++0UvvhiosMaFYw6D2DbjgyI+Ty9ZwA/+bbDkhkaz7zrcPDsvo/97nqvacNJSzXeWB/dAfW+so7MAw/ktCvfI/uqq5heu471VHPg5slwSPQ+akz33vTLSf/EEK5lxVLce9KSjFL+WHP1Xs1SEXE4qx06V+Pj7Z3Xo/oW9/8jr9t8c6VOXiZoMQ6ObD2fj1tf56DMlYOOb6RY9aQV8Y5UKFKNhgCRoeT+LCDmlmis26pEMcXoIssPU8IfAp2D/rkZkJc5ihouCsUoI3l7lAoA5k8WHDU//p+pWdWgGjBhJ0imnktYBhMdyj7FF6FPANgeWo8lw7zS9BBfL7iBAzKOxpThBEfXN881/KnHMhkMEnjULTRkbd8+0iGlCIJ1gZcIO20UeqYkOpikR0rJc2sdGgKJjqRv0lcej5bpDjwIvx9z48a4i1Yp+kZK0EZTCrDjIDS3TePziD4tIIJhOGqB1q/vbSAU/TxkuuLytef0FBbD770HQPZllzE3OJci73Q8ds82VpNdBxARf7vS4QU83OSkCwrbxwPPX+FOra2uk8yZJNjdILnhYXeGWPdzzfVD7v/8u/mRfvw3hhkpJeU1kmBYXSsUqUkwLJG0i7r9ZABPyIO0+CdzKhQpQSho9ziuhRB8Wq4GOxSKZCWlisDtixg61Mfpbwed2TR1zVL5BseJROITfiUAjxA/f8jkunM9NFo1HJ51Ov+3q9NzdY7frcx+w6QnEhVeXMTKTpbBIK1//zt5t90WyQRWdEfy99rb+EbBjaRr2YkOJibJdNUMtl/PU0n/6yjwVTl5cmSZ96CDSFu+HKexkfD775N9+eU4DQ20/OUvjH3wQXAcwh9+iO+QQ5AtLUjLQhgG2Dah994j7ZhjXGsUrxe7qordZ5zBuKefxtywgbQVK0B3xbG2p57Cf+qpUfHI1lZ3X15vj6z5VPB9d0ZZbT0ZCiF8PsAVaYN9aJDhOPXJbH/085DZkTkd/cVNLC+n5uyzyTj3XAA0w8OO8CakdlCPfX4l/0qOz70o5vt1t5AZLoTolHF97R3s+hZJboZgU6Wksf02c8cTFleeZkRlA5d45/S7/92N8KM/mdx6kYfqOsmtj1sDshuLl97Os1sfdwXs2mYozh/yt1Uohh3T7uLn3Y8ArGuC59Y6HLs4dvFHhSIVCbZZ+Hw9B1FnFKkcQ4UiWYlLAC4rK8sCKC0t9ZaVlSV3at4oI8svSPfF31Gtb5GkeeG5tbbyAY4TgcAjfIQdJQCPBA0BaGlz+E/zo9w86TneaHbF3lQq+jYzbUmPc9J/4olkf/45AN7FixMVWs/50EnIn2uu4Yrxv090GElPQ/uU78ra5P9NO5DhMGkrVxJ8/vnIsvC77xJ+t7Nw1p7zz488rpo1a1Dvs7PdR7YHl18+4H0Vb9+etELwaBOAsy6+mIyvfx0AnwFhq/djuzXU+2vdr79dn3+xy80sjUXB3/4WeSza7XRyWtJirpup58ZcfvOk53ip8YFBDyA40sGif3Xb54FphYLWkKQxIPnhGQbbd0uy/O5sr4z2sGubXNHb7+vctj+BWkrJ0hmCNZvd9T7f6WZrVddJquski/cbwMyzVsnmaklOOkyf0LldZa3k9n+4Iu9VXzZI80JuRuf3tbPeneX22Q6H4nwliilSC9OSlIwVkQxgx+67CBzAsYuVKKYYXYRDNl5fT71hV0PqtFsVin2NgSqELaWlpRuBD4EP2v9vA35aVlb2jSGOTYHboN9SLXnzeqmZIAAAIABJREFUQYtfnN9/ZsbOeskVpxrc/KilfIAHgE9Lp81pSXQYox67vQr78w33AaAJjQvHXs84T0kiwxowEzzTehQNFLrerwfciJAialG+R5UH7o/fPut2KF//1OGMQ3XK3rcjVZaTjQ7BSYbDZH/nO4z9wx8iRQvNjRtxGhqwd+1Cy8vDt3QpVmUlmCYiPR2npQVr2zbSTzwRa9s2rIoK9PHjCZaV4bS00HLPPT3eT580Cc/s2YiMDMwNG/DMmIGx335oWVloubluUcaWFoJvvoldXU3GWWdhfvYZsqkJY7/9aH30UTzz5rnZ+qFQxFs72ZCj0ANYS08HoFlUYVrje1133VbJ6o0OK5f0POZ/XLGSmyY9iy50mtskYaszSzbDB0fM619oET4fp3q+QVaoakCfQQiBLgxsTAy8/Krya/y4+K9xb782UMarTX/vNcO4gzGZgrOONFjzR5OScRp5WXD7P+wur8OfyyyCJrSFowXg8vDGmPt85HWbaeMFC6YIxo8RzJnkCriPveneuzqycvsTgK+4xxWwV13qiRQrdp93btch/uZkwC2PuY/vuMRgxx5JfpZrb3H6ITqbq5RQoEg9PquUbK2WXDJrHgCmHcTXzzYKxWijolagpfU88pvb1GxkhSJZGagAPA5Y1P63P/BdoATYMcRxKdoRwI49Mm7fqPc2O3xpkc4R8zRCpsSjxy4SoojGJ/w0OLsTHcaopzUIhbmwxvwbp435LgBz0w/pZ6vkI1PPpd7ahd8bu2hgh8+koifHZJ9HSLbiieGtqehkQ4UT5en+6Bs2b21wOGimRn2LZEph8mUSCSFw6usxpk6NPCctDe+iRT3W9XYrduhrz5r3zJqFpz0r2Dt/PgC511476Jgyzjor5vKsSy8FoPG227Dr6jCKknNAQo6iDGBz82aa776b7Ctc25+7ai7i8LZne6z355dcsbAor+/9lYfWs9uqoHbsw7SGLowIwGELco3+vzS7qoqlzWdS+8wfyLnyygF9FkN4sKSJIbzU27vi3i5gN/JY3Z0Dei/bgbxM8HtFj+Udtl9Wt9nn03wLCDtBvFr0wMbqjQ6rN8L3T9WprnMFrA4B90dnGhEB+NfPWJy/QueGhy3uvKSzAVpe47Dqyc43e+zN6Dfe3SC5+dGugrAHR0p+cK+7rON/B5l+aG5TArAiuXn9U5sj5kUPRFXVOXgM8Giu+GU7/Wf1V9RIHEeqfpli1PB5nQdR0HMAfV6JoK5FCcCpipSSp99xmFksmJPERagVg2NAAnBZWVkD8Gr7HwClpaU3Ao1DGpUCgJApeWO9Q8iE2RP7v4BKKdnV4D5+/VOH1z91MzoG4unW2Cq54SGLOy7ZNyoVtLRJGlsl3sw0rCQvPDYaaAvDtPEaa4FDsk5OdDiDZqJ3FgEnxmVPSqTjRHxQFbE5ecy3Ex1CUtPQIvnD8zYHzRS8u8kVR97a4F7Pr3/IFVAOmulEXkskpyzT3GFgACFw9uxBz+tHuUsmLAunvh6SVAB2RlEGcNPtt7sPtM7ORE1j5zH8zmcOB84QfPSFu+zfH/U9o+J3u3/IOfk/AWB3o2RMe9Vx0wZPHInyxn77gZT4TzppIB/D3bZdAI6Xf9b/jkOzTuXWqq8P+L2uOE2Pyu791dcNfvwX9zrwWaX7XTndLgU7zW3UWDso9u4XWRYy3ZWOnK+xsx6K8wUSWLtFcvvFRlSxva3VkvtfsZEy2l6jq/gL8OZ69zf6xQUG195vRYm/HRYVmhCsutSD7Uh++MdoAdhrCNZsdjhsrsZTq23OPkpZlymSi9seN6mqg4VTNXLSO8+RCfk2S8Z19pVkHBYQU8YJ6lsgPzlLICgUA+aICbUI0VMzmFIoaFGF6fcKKSWmDU+stnl7o+TsI3VqmyRlH7j33cXTBRV7JDV9qHAzikSfs2y+drTOAdM1duyR3PFEz2vYqx/Df58hKMofJQ1RBTDwDOBY3AhsBm4bgn0putDcBqUHaLyw1iEtDj0paMIJB7odqytO01n1pM2CKQLTknjiyIaRUhIK9+xIjGbe2uDwdoPDsYUeTCUADztBU5LphzR7XKJD2StyjLFsC34S8zWnoYG05ctHNqAUwRE2mkhOC4Nk4ucPWyxfoHHiUo2TDoKfPeA2yrp6diaD+Avw9DsOJ3QRgGUwCCk0AOKZPx/hSd4Bz9GUAWzX1wNE+eZOaO9UPPW2zasfO/zttc7161rg6P37zjxpbR+I61hLSslDr9pcd07/zVstPx/ZNrgeqh6nACzbPdk/D35Mjj4WgOsn/oM6qzru9yopiP4OPAbcdpHBi+87lL3f7j/aTStfnPGlqPiaWiXXPWgxYQw0BCQffO5w/gqd5Qt1zl/Rud2qSz00t0l+9oDF5zvd2J99z+HIeVrEV/nOS4zIb/jRFw7bdksy0wTXn2dw/YMWi6e7Hc7LT4n+DXRNcN05BhIiYj3AzCKNq+9zr3FfPVL2KN6nUMTiintMfvIVg3G5w3u8VNW5/69/MLpIYnPQJmNM53PH7v96UJwvCIQk+UlVblahGDyyqRnbruuxPCNN8MI6m0XTOu9fli15d5PkkNlir+suSCmxHfhTmc2GCokmetcvLjlWZ26JaI8BmlpdyyS/151Jo2vu/6DpFp81Laiul9Q0SmZNFGSmCd7d5FBeI1m5RCMzTUQGmtN97vrg7nN3g9vXfW+za2E1d5KgJQgnLtXw+wTvbHR4c4OD3wunHaKzZpPDluqOwAugj/oAf3stegB23dbYH/jAGYJZxRoPvmqzuUpSUiA441CNLdWSZ96Nbiz89RWbv77Ss4DlYXM0Tj1Y488v2dz2j+hZPYrUZ0ACcGlp6f/hev9+AHxUVlYWBIpgBMoh74O8uM5mS7XklGU69YH+v+KWts5GdUmBxv5THWYWawRCkNvPL33NX00CIfcCtS9RkCMoFGAIr8oAHgECQZgwRpAvB1f4KVnI1vJ4pO52lmSWRr8ghOszGgolJjBI6iJwUjjoQzLuOLqZUSQ49WBXKM/ywzdX6vzheZujFugcvT8Ew5LCXIHfl/hO5ONdp4BrGjIUQhip8xsLrxcZTt5r/2jKAO46MyJgu8KtW0BJ59WPe2b7ZqbB4XN7tkmklHiFn7BsY3NwHQCh9v5JhxVCPIeg+fHHtLz1Ft5lywb2QQADD7Y0saWNoPd2048rVkYetzU3873C/8WvZURl5g6ENI+bUavpnZ/1nKN07G6X/Uw9lyZrT+T5tl3uChcda/DLv7tf1tTC2AdWll9w6jKNp95x+NIijZc+cHipPePo6P21qI77wqkaC13HF3LSRZQ4HIvczJ6vvbHeQRNw+qEazW2Qk973d6AY/Vz/kMkJB+ocNNM9t97d5PDwf2wmjxN8/9TOk7u+RQ67AJzmgZsuNLjyXgvHke4xmiH4rDLE5ILOAW1H9hRRuuNI2L5bUlIwnBErFCOIz4unqOf9rDjPtS4Ct836k/s6RcRH34Czj9R7CJp7Q1/Ja/e+OPj3ebabo9+GioHta32FG9hvn43eri0MD/8n9r5mTxSceZhOMOzeD7PSB3eNWzRNYFpE+gqTx8Ex+0cn4ZTXOOxpguI8QeGYnu/zzZUG975g8Wm5+zlsR0bNFlKkJgPtpe0AVgCXA9NKS0srcX2BXygtLT0d2ABsLisrG7ozeh9G12HZLI2DZ2s8v7b/rzQQlFHTBL/+JYMX19ms3Sw5ZlHvWXeWLQm061X/WuMweZx7Yjty9GdibNzhoOcKPHhVBvAI0BKEgmwIBVK74F6H55spwz28bGVLC96DDkpEWEmP1Bx0lQHcJzWNblZDV1z/LZvCXDB0AUmUPZTR1fpNCHfwI4kzanug62Anb5PFkdD48+txfv0jtMzYnuOpQtoRRxB6zU3xDTiNFHv2wyYE9Dxe5k8WfLJdYsS4XGwPr6fAM5HK8GZanWaO8n2TcLP7Wri9jxmPBURaaSno+qAG7AzhthlsaWLEmP4K8ETd/0Y9r7d3McE7fcDv1ZWbv975Xh0WGZlp4DiSrteFDC2HKmdr5LntuB6/Y7PddcaP6biWxGbZbFcAPnGpHhF/ARZP7ztJYDBZXcsXaLz6sUNTAD783OHI+e6P17UNurvBbd/6PK5txGDZF9q1Q4FlS3St8/ccyPcWDEtuecziunM9NLdK6gMyksUeaz97miS/etTi1m8Ynd64EgwNTMu1wnv6HfcY3L5bsqHCiXhSfloumTVxKD5xbBxHEjQ7v4cftFuYrLrUQ26WQ5oxsAzgwlzBG+sdjpg3PPEqFCOObcec9aVpgnVbJeu2Rp8Xd1xi8IN7Lf72ms3EsYIde2TkfyxmTxRs3OFm+K5covHxNkmaF75RquM1iFuM7ChC3nX11pBbZ+mLXTIy2ygQhNyMznO+YxZPrOdSSpz2WVr9XR+77ycWVVVVFA2hHZmhi5htqK6UFGj9DkhdcpwrF77zmUNjAPKyhihARcIYqAfwTR2PS0tLPcAcYCGwALi0/X8BkJzltFOM4nw3hb+D/3nK4vJT9F4vMnc9bXPSQRrzSjqX5WcLHvi3zTNr+vbSg860/lseM7niHpOCHLfDAG6miRDu1AihwZYqSU6G2xDP9oPlQDDsTqcImm4V7p0N7rTAT8tdE/GqWlcsyPK7nZHWkFsQYfoEgc/jXoRnT9LYVS/ZXiOZMk6wvUYyr0Sga4KqOkldsyQ3Q+Ax3Av0znrJ+DEC23Gnm2yscMjPFuRmuNMwMv2QlyloaHUL6XW8b3G+u7/KWkn6OJUBPFKETUlGmkZO45xEhzIkXFNxMreUvBC1zKmvxzMngZ8viTu3UjjoIrmzQxOdP/3hFw4Hz44tsvQl2CSST9veRBcepgoDLGuvp/aNKLqOTGIBWEoJLU04jY0pLwB3FVpNGSZTH4OlBXhhnT9qvQwfHLVA45PtNpkxWpNvND1B2HGtG7aFPuUrY25hi+suQUsbHDFPw+fp/xjUCwsRvp7Vy+PBq6VhyiCWDGPEELBbnWbebnkGgCUZpawNlHFE1hnDMgCmaT2znzK0bFqdRq64p7Pz/YsLOq+9O+v73qffKyJtwo7/V9xj9luYbzCsXKJRsUdSOMZtr3YIwN0LxvXFCQdqhMz26bi2O6X3X2uciL9hB133mZsBDQH46VkGPsNtn47G4lwDLTrmOJL//lPs7/7YxRpzJwlyMgReA9J9grc2OBw6x/2Ou2b6dT32oP9r7BOrHc48TMeyJY2tcP+/o7e5qFTntU8c/vC8zapLNQ6YLsjy97KzIaKjrgoQyYoH97Pl55sUze48p8IbN8ChJ/S5v4Ic8CZ3E0ihiJuqOknIFL3WPVkwRfDxNvfmdNtFRqQNuzc2AqUHDG67WEJxRhrMmiiiBpG61/bu3p7t+lwIQbzN8pRqF/eC3+tmLitSn35vQ6Wlpb8oKyvrUYK7rKzMBD5q/6O0tPTnZWVlJ5SWluZ2X1cxOCpqJEvak0UkUF0nMS0ila678vOH3IbWlHHRF5jF0wWrNwqmFopIFscVp+mETffCPX6MQNdg2vjO7eraM2lqGum1EThQ/rWm99fKPuj6rKdQ/eK6IQmhV2bQPpKXcOln9GNabgete4ZjKnJLyQusqu5WzExKV6jJVhU+YiE1G43kzgBOdBOtLexWT04lBBon5l7KBu0+ZHcz0iRHJHkGsJQgbIu2554j65JLEh3OXtF0++2RAnCmDLHbLEfzfMxrq48C3Cmhn1U6vL9VEgi628TqNKVpGRydcy5/r70VgHSvQdB0jztbRrdn+kL4fDgNDWiDKFroFWmEZZA2GaBNRs9okVLyRN3dANw48WkcHA7JPJlJvqG3Pjp1mYYuenoAe7U0WsLRmc3p7X30K07TyRiEfcxwef/5PILvnuR2R/61xqauWfJAN/Gvo0hd2JJ8sl2yfbfktU86P/Sz78W+7nT4Gx69UOOVbkUFGwLu/w5LjN7we92JAt0LGhXmwsIpGouma6wvd/hXe6LF+St0HnrVxpEFXHiMw30v25y/QmdqoeDN9Q61zW7ywZ4muOwkneI8gdfj+lLWNUuK8wWWA82tkJ3uivse3c1My8/u/N2iBdbhozAXVix0p2u/uM6J2SZ/9I3o3+uOiw1agpCdLrBsSVMrhEz4x1t2F79LWDhFcNBMjdpmyROrHb7Y5VBZ676WmeaOZ88tERy9UGdcrmDBFI0r7jGpb5G8v1WSt78YsMA9ELZWOxFrvKMWdArAALWB6PZM0+/+Dy76QZ/7E0IVU1KMHp562yYYykJ4Y19/LypVox2jCVcAjp5tpEhN4jkzv19aWvon+v+1LweuKysra+hnPUWc5GZ0ejwKXOE3ZPYUgINhSUMAjlusMX1CdOaYEJ0N6+MP1KKyh/frZZbBLd9w3yAQlGSkje6TfMceyT9r3MdCXdCGHdMGryETn2Y5RHhFz/Q02dKCSPFMveFCCkcVgesHv9fNTEslQrKVLD3P7a0nsZgaE03rqZ4lEY4E7+xZBF96KeUFYIDCl18G4Le7ruSY7HPZ1lhPfpb7OZfN0lg2S2NDuUlRXuz7sZSSNYHnOS73wsgyr+HOTgLXQqAgJ04B2OvFaWhALy4e8OeQOOwIbyZbH0u+Ed2Y6vD9/W7h3RG7oOEQf1cu0ThsrlucLdagaksbHDBd8LWjo5v63YvKJRP1LfCLv7mC7NH7a5x8UPT9wmsIFk8XLJ4Opx/S814ipYwaNAgEJdfcb0XE35+e5dpgdLUiaAxIGlslRXmCx99yq613pbeMp10NUPaBE6nI3kFX8fq+l+0ey7rym2f27np5xWk6a7dEi+Hnr9ApyhPkZbnTnYVwxe53Nzl4dBg/RqBp8Owam6o6+MrhOoW58PZnDgXZgnmTNYpjiJTLZnUeN1K6KROW7fpL//ZZm0NmaxTmwlEL3N8lu93L2dBFZMrwZSf13u18YnWn+HvHJQaaEDz8H4t3PpOcfWRnPHMmCW542OKgmYKXP3R4+UOHa882yMsa+jb842853PQ1N2Yh3Kz4kCmxbPj3ZhmV0S/jPK2S+HajUAyIkAkeafaaAawYXaT5BA0to6QDv48TjwCcAWyhfwE4gVWPRifrKyTHH+g+DpnQ3Ob+705lrXsy9peWP1Dfs9Eu/gJMHCuQ7QKwygAefiwHpGaiyRTyCO2DbL1b5li7J5TQEtfBFkIgHSehMcRCStleBE41FPvi03LJioU9l994QfJmUkhwrT1SUQBOcgsIxwFjTC6hB99KdCh7Tdb3v49neqcHriE86DKNA2dorFwSLeZl9GIkZkq3qal38d01dMFzax2OXazz4vsOV305znPF48FpakLzD3weea4+jia9jpBsI010Vi2zuxSCGg7RtyvHLXa/M12TkSrkXdkp13PqvOS6D/SHEG7W+80XGqR5B94G7Z4xnpEm+NZKnU1VbkHlDrq2h3MyXEsDgLOOMDjriEEG343KyiomFE1A4A5wOA4Yev9TgbuK2F19I21HUva+wwvrXAXxpq8Z+H2CkoLYYnhXxmbDCQdGrzOvJPrY6J5A0hdCuCkTXgNmFgtWXbr3x1msDPN3N/Vsl3/jSzo/+rPF4XN1zjrStfXoGDQAOGZ/jZMOGrqB5u7FVn0e17Zu2WxJZdh9n1OyvoWj/wgZDvcrhnX02RSKVCdsSdKdMMI3zF4siqQgzePafSpSn35byWVlZanVehxFdC1i0lEhO1bqfYdlw3ubnX4bgYqejH6ZO3kQgI2FiOGZmIoUeiZHL5CS5rvuIufKKxMTELgFuCwrZlGGRCIlCM1O+gzgRHfNWkOxK+wm64CcBC4f/xtXBNM0pJO8YmosxCCLgI0UEtB8XjIvvjjRoQwpR2SdwbLMk9gqXuzhX/vlw/WYVlcAYel6Q3T47hZ73Orjxy7W+P1zFgfPEoyPUck6FqKjaOEgfIB14cGSJmGnDZ+WjiMdLBnmH+3WD9dPfHzA+xwsmuZaX3QnKzybMb1kUicrt37DIBhmUOJvb8yepDF70pDtLm66FgbShetLHN92IuZjXROsXKL3GCwZzay61BMp3tSBxxBRYvGqSz1Rdhgvf+jQEJCcv2LvBk0dRzJ7Yu/HoS072zMZ3jFIDWRra78CcG5Gap2TCkVvTB4nmFW/AZF2aKJDUYwAHh3e2+KwdKaSBlOd5E0pUjCjuItdwwTBkv20mNP8DB1+eIbBhGEozrEvoSwgRgZbuhnADS3utNWunnaphiZ0nC6dAPOjjxIcEQjDQFpW0k3JkgDCQk9yD+BEc8C01GtY+bV2z4oUzQBO5pilAwKJyBpdZZd9Ih2flkZlfYj1652o7MQl+7nnwE/P6tlErTF3AG728KGZp3Jq3ncA+HR75/Txs46MP47g88+T8dWvDjh+j/BiSxNThkjTMrCxeLP5Kd5vdS0u/NrI2QBpwvVB7U6rFYxMw08VDF2QqZLJFF2INSDanSnjBBccrZOXJWhulfzsQYszD5U9sncHQmMrLJza+/3YodMDWBM6UhPIcP/pcaaV6GFmhWJoaAzAVKscvMsTHYpiBMjOgKmFqdtnV3SyzwrAuxqNmAUUJo4VfGmRRn6WQAjXb7fDe3dMe3teE24Rqw4xVtfcP8t2/1pDkJvpTvfS2pcL4Y6cdFQn7nituc2dQlVR41a9NXQozhcU5kafYJedZLC5yonZT33ybZsrTzMGbPGgiA9b2sNSuXtfxZJhNDzc+HcL2xm+wjIjgUf4MGUYn2jvsRpJcEk1DDBHpjjMQJAS0BzXKiCJEfT0kRxJvtiVWp3DqG9JCMKaRaO1hxxjbKJCGhBC13GSWAB2pCsAj0Z0PBSMsfD2UjNzbPvgYKO1B7+WiVdL44PWVwBXcOkQf4GI+DtQfIcfPqjBMl14MGUYU4bxa5mYMsTzjX8C3AKhI4mm0SOLGqDK8280LbpQqWrPKEYj/3VqZ7siK929blz9V2uv2pc76yXjcnp/3cHpFIDRCXtjVGOMQUtw0CEpFElFSYFAbAojPKnbj1PEjyZGa2t03yO5e+LDiEePfQjv2CP5y0uJ7wzecJ7Bh587HN9lqpeuQTiGz1tTKymX5ZHsXFV+XNTzke7QjWas9gzgoxZovPJhalfDcAXgED7aBWApST/rrITGJDweZBIKwLYjkcKKqpqdjGjtHpSJGk9L5dF1oWlsndLE5/W/5YKCaxMdTnxoWnJnAEvQZOo3uaWUhF5/HdrtcSTuIMvMIo3SuX13Hm+qOo/zxl7DwvQj2Glu63Nd/wC1XBkOIwZhAWEID5YMs7rlnxQakykPbQTg0MxTBryvvUUX8NYGh/27ZSuOqT2TtqmBzgx94JeV5/CziY+MdIgKxYhyxyUG1z3odpg6kn3uuMTgB/fGJwr/8u8me5rgytN77ybb0orM/mpzWnjsj1OZb4b7beGUjIsuQqhQpDLSspIj+UWhUMTNvnvG9nHfvelCA6TrqRZoc313C3LcUQ/pgGhvY3+6XbJ0ZvuOJGhaZ9EG0VEMSvRc1kFrCNLb+x1ds82uuMfkqXfsHj5fhh670Jtb5Vc1JIYKS/YUz1rtJtL1XtKUFAPCkiZCeiPir2VLDD01j9/tofWU+OaQqecCIE2T9BNPTGxQhuF6ACcZ0rJBk2hJngHckU2XekYMSYDoyIBKIcFS15O6LHsyZgAPpsikU1uLlt15D+2wXPqw9VVKcy/od/sH99zIwpIXWJS+gmy9Z3b5d0/S+dcahzmTBnYvkaHQoPzSDTzY2GwJvs8W3ufNlicBWJ498gOAEthU2fMYEVYuAbshIgCvaXmBgNM4wtEpFCOPJgRtIaL6XDv29H0d7einWbZkT5O7rDi/9/WdLtn0WnuLwbHj8JOXbv8vs5dClwpFqqE0CIUitUjunvgwkpdhc30co8DuDTr2hW3ZrC7Luz5svxDGKuTQdVlvVa5PPVjjqbcdFk2LXq5rArtbpQ/HkUyfoC68Q4Fs72TXmBUcnnU6J49xp07+s/73lIc/Y7Z/aSLDGxVI3CrumnQ73GceptEaSt0M9rn+Q/CITvFAaBoywWJSsmYAS9MG3Un66ccdFj9GgsJMLqlvgAiBbsInbW8mOpK4EYaBTOIMYEeCJh3s7dvZUVKS6HB6ZUcc63gXLwaiM+f2T1/e73ZHZ58TKf7mET6Oz72oxzrTJ2hcfsoghm3C4UFZQHS05RanH8NBmSfwu90/oDTngoRYn4TMnlcNKSVFmXk02XWM9RQD8FjdnQA40kETaohLMbqxHbjyXncwvDgfVj1pk+UHR0pMC378F4vJ4wTfP9WgISD5+UMWxy3W+PdHbhuuv0zhrh7ADu42tt1/2ytoQl2zJDNJC7sqFAqFYnTTrwBcWlp6Qzw7Kisr+9neh6MAOHyuKwDPnxzdQDc0sLppS0ET5k1WjYi9obo+uvPU6jQzx39w5HmJdzaNds1IhzVqMWUYHB8nLtWoqJE8/qbbQP+vU3SmFKZWp9QjvO7naUdK2W52m0Dai8AlG47jgCYRSZ5b25ufpiIONA097N6kEumjPCBSwQICSesTT+z1vkRODrIxOgM0+7//m6ZVq9Cys/HMmkVo9WoA0k8/ndann476bnzLlxN64w20vDwwTTyzZxP++GNkSwt4veiFhdgVFTHf25g2jbEPPQRA0Gnt9E2PAw0dn3BHCTcH1zLbf9CAPndfyPDe+RfmGRMo9LjC/Jdyzh+qsAZEW4ykw5pGaK4tpM7awDQWAFBgTKLGquCt5qc4PPv0EY5SoRhZLjxG576XbX5xvkFjK9z+D4uJYwWtIbj2freNtH23jKoH88I69/51x8X950c52Bi4g0eyXQB2rP6LwBVku8WzKBjoJ1IMF7a0EIjIwKSUkipzK3fvvAyAa4of5sbKc7hi/O95ov5uvjb2etK0dGxpoQtP0ic2DBeqqbzvkQKtekUcxJMBPKnL4zTgTGANsB0gib9iAAAgAElEQVQoAQ4CHh/60PZdDF3EHHmOVaz8nudtDp6d3IJKsjNhjOvH9XLTg7zc9CAAl4//deT18d4pVIe/SFR4ow5Lhqlv9GCZkqMXary7yT2o73raZtWlqXUsG8KL1UUAzr7sMoxp0/rYYvgRSVoEzrFshCYjUyWTFS2+Oi6KdqI6AEJgS7dj/eOKlQCclPstpvjmUeTdDw0t+UThWDfWJKLDjzrvN78h/eSTh+U9sr/3vZjL8+66K67tq6qqKCoqivv92pxm0vUsoHPmTV90XWesZxIZWh+VmQaI09gYZU0xGPxaFitzemYljxQT8gWebvrDrgbJwgnjqbf/E1m2f8ZyXmq8nyLvfiMcoUIx8iyaprFomtveyPTDKcs0aho7xd9Vl3p47E2btzc6XHKszsyJgqYA/PxhK2Lp1xeOtNG09gxgGX8G8JRCjbpmJZ0lE1dXuNZtN0x8Ap+Wzvbwen6768rI6zdWngPAqp3fcter/ErU9odnncHMtMWka9l8EfqEIu90pvoWJGebZwjZ06iOY4UiFelXAC4rK/tGx+PS0tK/AeeUlZU93mXZGcBXYm2rGFpiZQBv2y2ZW6IuwHuDpoHVrf8/3jM18tgQXtYFXmJRxvKRDWwUInAtILZVp3N4iWDyOI1Vl2rYjuSHf7TY1SApzBW8t9lhSqGIVIFPVjzdBGDfsmUJjMZFeL1JmQEsbRs0kj4DWNcSJwBbtsRI7q+nb8Jhgp99wvfHP8P9e26g1qrimYbfD8tbTfftT5aexwet/44sK/HOQRMai9JX0GDvpsGqocasYJZ/KW1OC6tb/skc/8EcmFGKRNLqNJOtQUkSC8CuB7AzbOJvImhzmvFrmUCnF3BfCAQ2JlJKNrSupnQIM23z7rzTzWgeBI1WDdXm55TmXsCKnMQV/8xJFxy9f/SFoyUIE/N1ftN4vyv6evZjjn8Z+UZRxE5DodiXWLFQZ2u1w+qNcM1Zbvf3y4fpfPmwztGT3Mz+rR86cLDR2y0gIhnAcQjAOemwbZfqtyUTk7yzqQhv5KbK8zk+92Keafg95+ZfzUO1N/Gdwv8hSx9DnjE+Yp/T5gSoCm8m1yhkt1nOX2p+xhvN/9jrOA7NPAWf5me+/3D+0/woC9KPZL7/MAQi6YTkPU2SzVVJMOtRoVAMmIF6AB8PnNdt2dPAn4cmHEVfGDo9PIAPm6NResC+OfVkqNCEKwD/ctIz/LTiJAD0LoWqsvV8iryJzeocTVgyzDePS2NGTmeHVdcE31yp0xaSgOD1Tx0aAoJ/rUnOVMy5kwSXrjQwhJegE0h0ONEkbQawg0iBgpWaJrAT1J4NBKEmxTIquv6aEhAzp2MIgx8Vuc2CjiI8EslrzY9RGd7MR62v7fX7bg192GNZeXgDANtCn0YtrzS3RB5vaHubDW1vd76owbVO4rI3+8Npt4AYTYRlCK9wiyDEkwEMUGvtJCRbqbN3DmksacuXD3rbNYHnhy6QIabsfZvLTzE4N90VMarMLcz0L+bc/J/wStPDSVPTIGWsYhSjAr/PPdbyhyC5wJZ2p2XAADyA09Pg03LJ4fP2OgTFEGBLm4rwRq4quo9bqi7kifq7AViQfgS3ZLwQtW6Hd7pfy2B62iIA8o0J/GrS81HF3x3p4GAh0Lm64oTI9gLR5z3vrZanAfh3098B4m4rCQTfGncbv9v9w8iyQzJPZnXLPxnvmcLK3Iv4pPUNgk6AFdlnszG4hrLGv/a6v0LPZI7OPpe1gRc5d+xPI4VEu/LKhw7NbbhTlBQKRUoxUAF4C3AZcHeXZf8P2DpkESkAMJ0QHs0XtUzXozNVTUtiKbPKvUbTwLQg3efhBxPuodVpjnrdwEOTXZeg6EYfNhZjM73o3abY6RqYNjz7nk15jaS8JnmP7fUVbmxGNw/gZEB4vW5l+yTDsVIjAziRFhDrtjrsqE3e474/vLPnkD7/KHTRmUEVKYCKYHn2VwE4j58mJL4OulaGf3bH3VFZ/MmGlCBGWYaNJU18WvwewAAz05bQ5rSwJKN0mKIaPYQtSX2Lm2m4vziK/TOO4qry4wg7IcZ6iqNmODldRKyRoMVuYLdZzrS0hWwLfcpvd13JLSUv9L+hQjEEjMuBA6YPjWDVtQicIXxk2hlIO4wjbWzsqALBXdE1weRxSjRLFqrNzwHIM8ZzQPrRvN/6CsCACmV2L/SuCQ2t3R96oNe37oNitrTYFFzLX2p6L7UkkVHiL8Dqln8CsNPcFrVtPEV6d5nbebj2ZgCu33EGt5S8wP9Uf5vLCu+KaBMeAy4q1WHvE58VKcToao3uuwxUAL4EeKK0tPRHQCUwETCBM4Y6sH2ZgN3EDZVf4ecT/0Fal1G37hYQ1fWSbL9qROwNjrQxhIbZLqyP8/Sssi6EYG2gjFPHXDbgTquiJ7a0owSiDnQNfv1M9FTseKfijTQdRUNcC4jkyrYVaWnIUIjQmjX4liZHlheAdCRoEi3JSwhomls9PBG0tMGyWcktkPeHLU2MGOd3MtG1c5WuZeEkoWVKB64FxOhqcrvHiOvj258FhC1thNBI09IJOoFIMbhkYJJ3FsfmXJjoMHrw5nr3Atb1OB9rFPNB6yucPOZbUcLGTypO4Nriv5Op545IbO+2PMsLjfdxS8kLbG5bR7Y+dkTeV6EAt8bK144eaNc3Nm4BMHdfSzOOI7x2HU1P3c//jvsNYdnWp/A3uq7oqU11+HNOHfMdAM4eexVnc1VC4+k+I0IXBnP8y/oVkt2+VezBPLc2g+jxejwDgFeVH8dV5ccBUBHexLS09qKiOTClUNBbc/nDwH/YP+OoPvetUCgSw4DugmVlZe+XlpbOAA4GioBqYHVZWVlyKSBx0EJ95ILWwcm536bJrmWMUYglTcZ6ivhLzXUsz/4q20PrabJrkcDi9GPwamksSl+BJnQM4cGSYQJ2EwGnkcrwFhqs3Uz0zaTFruftlmeotaop8c6hPLwBHQMbiwmeaeToY9kYfDdmjHXWToq80yPP9W5etcEwzJqY3GJKsuNgY2gGZj/9/4nemVSFtzI1bX5c+7WlTaNdQ54xfgiiHF24nf+elx5Dd4/xWy8y2FIlmVmcvELY8Us0169VeJJPAPb5cJqa2HPeeaSfeSZ5q1YlOiQAHMtCaDLpM4B1zRXdEkHxWEFxXupe04UQ2FjoAx5bThxC05FJdg53RY5CCwgLE4P4BglsaeIR3h4FN5OBpZkrk+4ev6Xa4el3HL7+pehO/ay0pXzS9gaa0CMFqzposRu4a+d3aLJrhz0bt9baSaaWy1vNT/NS0wOAsoFQpCZdBWAhBFrYJvj2m+QbpVgyeQcVFdH4tUzG6ZP6XzHJ6U38dV+L3SaLZ/bH1wtu4C81P0PHQ9ehC9MCrwG9Oco/VHuTEoAViiSl315aaWnp0b28VNO+/RGlpaWUlZW9MqSRDTOtspGsbsv+2fC7mOu+2vRI1POORuuzDff2/SYt0U87/Alt3IZBtfl5ZOpJd87Nv7qHt6imRecBbd8tmVKoGs17gyMdDE3HtF3v2d44NPMUKsKfRQnAfXVa6qwqbq++RE1tjEFvApGuCcaPAU0IZhYn93Hd2OoW8RhfmHyihEhLo/l37rXM3LoVu74eLTdGdlcoBB4PaBrmJ59gTJmCyMyMWsWpqSH0zjukHXkkIjsb6/PP0bKzcZqb0bKzMTdtwjt3LuEPP8S7aBEiOztyTkjLAsfBqqzEqa3FanLADCd9Rz+RFhCW7Q6EpCoCDUuaIzqlfG8Rmo7jtCU6jF6R7UXgRhNdhZP+MGUYQ3jwCB9hmVzWNssyT+h/pRGio2342Q73kd5tnG2W/0DWBsqAzrboxjY3+WB72E1wADfb65JxNzMjbfGA3v+q8uM4Zcx3CDoBjsk5tzMuKXkv8CJLM4+jwarhvYDbJnqq/jcApImMyOsKRSphY0UsIAA0BxxdMD/9COwkHlRURGPKEOlad0VA0cEc/zK+N/7XBOwGmrvYIQbD4NEh2IdFlRrcG32oX3N0EE8L/I9xrCOBlKqSlS3Gclb+1wjLIAXGRJrsWvZYlRyYcRwP197MttCnLEpfwdn5Vw3o4tX1YtfVZ3CgF8Cq8FbqrL6LneRkCMZkqlNxb7Cx8Og64X7aalN887i1+hv8q+EP/GrS8/y4YiUAV4z/PYbwIJEEnEZ0DH696/IRiDx1saQZ0wJC02BXQwICGgQzigS7G2HieE/SCcBISfhdt2NvfvAB1fvvn+CAXBrGlGB9+xiVAdwHpiXxGKl7TRcIbGmhJflv3BVN6MhEKf5xMBotIKwB2IRYMowhvHiElxa7AY/w9b/RPkpLUPLSBw5zJgnaut2W8ozxBKWbVFDsnQHAn2uuBeDfjX+LWvfe3T/pd/D6hh1f5SfFD+ARXhqtPQA8Xf9/AKzIPptWp4kMLYe3Wp7m6fr/47G6OwG3qO4VE37Px62vsyTjS6xufoYd4U0sRQnAitTCkXbUQFbavIVITdBeDjVhcSkGRtAJ4NOSx1ooGZnoncG20Kf8qeYa9s9YDkB5jUTTRMwicB2zTMKyLalsmxQKhUu/AnBZWdnU/tZJRdLI5ICM2MnN/6/wzkHvt6vQuzejXl6RRlj2nFjRdY9hS+LzqEbG3uBIG6+mE+5ntpZf68yMbLBrAMjQcli181t9btfdZmQkSPas496yv0KmZExmjA2SkOJ8wU2PWBw0O/kygPUJEwCofmwd83a/jVFSQvMf/kDm+ee7mbpLlxJes4bGX/4SgNybbiL8/vu0PvooAP7jj6ftuecAEH4/ngULEOnphN99F9naCoBn4ULsHTtw6urQJ0xAZGRgbdmCPmEC+vjxhN9/PxKP8Psxpk9HTy8k/dgv9ev5mWg0AbaTmA5c2HILa6QqbgZwOCorKtkRmo6TxNN1HUeOPguI9qzeuNfFgyG8tDrNvRZW2tcRwLX3u8fxhcfoPWYSGMIXGXzbGf4isvya4r9xY+XZAJyR919sCX4QyQz+uPV1cvUCJvlmA53tmZsm/YuA08g1FSdz3cTHuKnqPL6UcwEvNd4PwE8qjo9673FGCbutcn444Y8UeCYCndnTB2Yey5qW5G6zKBSxcJMZOm/YnrwCPBec6yYCJXk7R9FJSLaSJjL6X3EfZ4pvHsdknxd53lchQ7Ndv/jZjtOTvk+qUOyLDLirWVpaWgqcDYwrKys7ubS0dAmQk2oWEMmOR/jYbZb3uU4oDL7krrWT9DjYeHQDs5+Zpel6NlN98/ki9Am/qroAgJ9NdK1BYhnvP1a7ijWB53vsZ6J3JjvCm3oszzeKqLWqAPe3X5S+gmw9nzebnyQoA2hoOF2mAXf4SU/wTCVdy2ZB+hGUhzawrvXlAX3+RGDL2BYQE8YMXXGO4WZstvtfODq2tPteeYQR2W5wD32Yw40XnIg3TZD/618D4Dv4YPf/4sVkfavL4MX555N3xx3DG1eDhNrXkj4DWNMSawHhTY1TICZCtGcAp5AFhK55cOzkFYDdoYjRJgDHngUSc11MDOElXcvmP02PMME7jcM5fZgjTG1iJQZkaNnMTz8McL/T/935PQCy9DEA/HLSPzGEl2WZJ3BV+XE8WnsH7wVeBHoOKl9dcWLk8c93fBmAY7LPoTTnfNa2lPFI3e0sTD+Sj1pfA+D/jb+z1ynWfi2ToNMS8zWFoithJ4iFSUVoI7P8nQVuryo/jusmPsbLjQ8xyTuL+emHYggvO8PbGOspHraipA52VFtWoOG03/pebnqQgNPI6XnfG5b3VgwdNeYONbMkTroObNS39N4uCTltrMy5iOcb/9TjtcdqV7E9tJ7vjf9fwjKIT/jb2442lgyjCwMJGBgIIdhlbkegMc4ziY1ta5jnPxQhBK1OMwLB58GP+KT1DRZmHEXIaSUsQ+TqBf+fvTuPc6suFz/++Z5zskxm39rOdLoCpexQ9n1NKQpyL4uCCiKCer3irqAXEBVUrttPcQfcURDliggKkV0W2XdKC6XttNO9sy/JyTnf3x/JZJKZTGcyzSQn6fN+vaDJOSfJk0yWc57zfJ8vDnE2xlazd+hIGsyZ+Izx/8audlLHJi5u6ph+R5Pk7Wgkk9YanTpmT8yNoQBL+dFa45I4bjSVxaDbh0ZjYrFZr6Yy7sdUFhvtt/GpIPXmDG7cfAW7BQ9gbmAxdeZMtsbXEXOHsHWMp/v/zrb4BuYH9mF19NWMOD7bciNxbfNIz594K/oSjrY5vf7DONqh3ppJvTmDBqtlhwWLj/bcwd+6fiaJ/DKT06FmOBy+DPgkcBNwTnLxEHADcFR+Q9u1BY1Q1grgdDEn0X9HTJ2j4/gMY8IKYIAllWGarDbOafx0xvJsjffPafw0T/f/g6/PuWeHjfknsrTuwklve2T1GTR0tUz5sQpheHch249N0K9oK5EJwZVSBHywahPgsdFNSikCRyW+jl9erTlisTcqURJFtS5KlUACuEj5tk1dGsMbf64pGW4B4fUkfzplGGiPncRJ57rlmQD2kajkfWnwEcJ1F+xg2xg+5afSqGFLfB27Bb3R0saLDtpNcfZR2fc3/EaQ9zddCcBs3+483Ht7al22A7vh5O+w9bE3qTYa+NLsW/hi+2lcNvMG1sVW8Gb0Bc5r/ELqIPngqjB7VhxKlVnHnJ49Oab6LIwJv/NL+EtPFMxV685MXR5+z26MrQZGTkQAsA2W1X6Qf3T/MmPbfEuMZkvrAaxMXDXyXb1q6KVxb+szE6M4/SXc8ql8KOlTm6N/vuDw1ArN+ePM8dbpbE7lMFZHX+Unmz4zZpv0z3M+jFcAlS0J7Wkd2Rdv7lvLE313jXuz0clfgO9suHTMstu2fSvr7a+e/Ucqzdoxy//W9TPm+Pcc93FFacq11uhTwMmRSGR1OBy+PLlsOSDvjDzzqwoq1I7Hw7+6xuW0gyUDvDNcXPymRdSe+AD7sKplHFa1bNL3/c66D+9U8ld429lHmfz13y77n1jsSMZqvvVWDro/nq01V9FoDVppDI8f7JtFnATOb5X2gYhKjlSYOOHjHcqw0K6HK4A1GDuYZKUUOYwMnd6v4hg2xN6mxZ+925itY5jKh98IAvCfDdJjP5uBKDTXKiqDE39/DCd/z2u8POv69HkOYKT1w6GVyzCUkUqotQUWcUT16WNuX2UmJh09ruacMeuyWR9bOanthIDEUHRXu6lWIxc2fZndgwfhU36iepDO+Ca+v/Fjqe0vX3vqtCSBHRyMtMNoA4N+/8iEInuHjhz3ttUVir5BaJC5xwqmq0/z5Bsuy0YdN9eZzUWKqHTd/bTL7Mbx1w+6fSyuOJQ+tysj+dvmX8THZ/4AF4fHeu/kuJqzU+uGq3CVUrjaTbWKSq/AdbWLQmHrKD4VGLO/nD73ksZNzPGQXNbvdmNgEDBCdMY3UWs1s8VuR2HQ5WymxbcAU/mwdZRKowZbx6gwqnB0HI3GwCCmozjYqbZUPc42NtlrMJRJhVFFyKimyWrDxUlVBw+PEnW0TYf9FjVmIzVmI+tjb9LndNLka0Nrl3prJhs2bKB6RpBGX+vU/zhpXO0y6PZRadZkXR/XMf6n/QwAvrr+3ePeT3vsDezkyXilkq3JSrlaReScAK4G2pOXhz9lPsBbTTDLwGSSADPr5MO3s1zt4DdN+qfh+D/9h61QtMcrxcrpHbtgluL3D2v2L3YgWWit8VkwNIkTG4WiNSjler461DDALlJBaI3HqslzpVBpw95Kg1JmasISL9IalIfjmwqtdeqg7pn++7i/5/fjJmictGGW35wztq2SSHj0VXfSoz2+1nbnmAPrdEopvjnnHyil+PWWL/Pa4JMALKv7YN7iTTfLP39a7leUD0c7LAzsz1kNn+Dnmy/P6DO9T2hkAGqFqqLCnyieOarqTB7vuxOAXmc71WZDarvh73yXODdsvIzdg0t4Z12iWs5QBk/1/Z3DqjJ7WY+hdcbJzu3xDfzfMc9xCnsDiXlCxjMQ1by5AQ6rLqe9Ym9bvk5z73NjE8BiavaZl3zvZzlB/dfOH/Pepi9xdsMnWVZ7ESGjJiOvYWKNOUY2MqrpDfwqOOZ+hz9v2dbBqHmYknNRDC8bPjEJ0OSbDUCrfzcAWhh7AjqQHN6Z0eebzDYSTcbs1H1lxJl2nDNcCGYqk/mBfVLL5wX2GnM7v8pf8hcSr9d4yV9ItKQY3vcacvsJqBBKqYz5iw6vegft0RVcmUwUh417cNzEsZIoXbkmgB8BrgCuS1v2CeDBvEUkdij9a7a5VnYcdpZDHJ9pYnu3ACwnpTDxhNeT1JPVVKNY3ObN1/uRV1yeWqFZusQ78enk/73+HjWKWAFc6gxlZFRglAJz1LBdr3F1+bWASHds9dmpodrZ2NpO9Y8t5er4QnhyueY9x0683XA19Y4Mv9YfaP4Kz/Xfj6PjGQfQ+fTawJOcVvehablvUR6+1P4O9gsdS7NvDh+f+QO+3vE+DgqdlJHUTTec1Diz4WNcvvZUrl1/PgC1ZjNfmv27MRMVbrRX86/eOzKWLQoeQp01+epQI5koGt7HdXYwuWhLg+KV1ZrDFk367nG1xo5n7/EtJvav1xJn9l2tMeS3ZGrSXrd/Pj/+KORDKpcyyzcPIGtbAeE9QWNkIsTRJ+TfHHqeGzdfwWzf7pgGOG6i+lOUrlzz95cB/xkOh1cD1eFw+A3g3cDY5i5ip2VLlKmM9WJnudrBZ1hF6/k5HbyegPF6AjAXW3u8+VrPaVaceYS3Ts+6LiXTA9iRBPCUlGYFsOHpk1KuBsPDCeqddWzNWcT1+IPIhoeBiuJZUnkyh1adOvGGU+Tlz5/wjmW1iQr0WquJk2veS5/bzTvrx/a4HO36uffyhdZfAdDtbElVt53feEVqm8tmJSbKbfEtBBJtJXqdbTnFl75vu3fFkTgk2kE80vOnMdvOaVLEJ3Hg8dpal0/faPPpG20+e1OcK34VT13/8d1x+oa05/f5vWJ98s+5vF1erylLe68dsDD5fs+STLd1DEv5CxWVmGa7Bw/i+rn3EjJrUglgUdpyqgCORCIbwuHwocChwDwS7SCeikQi8laYBmtir+1wffmk0YrHxcHALJvDD0v5k5PmBHBcjSk9eqbVwlnefH0dB9qaFCs7vPPOth2NobxfAWwaCreczggVkMIovQQwCu3ht6Qu8wrgYePNqL2jmbbFiO9dWrqv0QGVJ+BoR+ZMEOPyq4qModb39/w+p9s3Wi1cP/fejKHNB1aeyD6ho+mKb6bZ18b1c++lJ76Nb3ZciE8FiHT/jotnXDvpxxiu+O3/9a85u+Einjgj8b19d9eNHFV9Zsb3WGVQ8e83NOcdN/79rVzvcuO9DvvOU+y/wKA6CN0DcOsjiUrWlR2aq347teGLJ+xnMLdZsWi2YmuPxmcq3t7kEnnexXGhLzkH+aF7KFwNpgFvrNPsMVvRMwB7tCpqQoo/POywuE2x33xF0KewHWhpgJqQImZDZTDxGxbwgWkmCgFicbDjGqXAjoPPgsFYIo+oXQj4EyOxlBrZH4u7YBnwwEuJGIcn7r7i3MQcLk+87nLygSY+M/FYgzHoH4K+IU0oMJL0/ciyscd7cgJqaha1GmjHyToypz32RhEiEtNtrn8xlglx786bLCYp1xYQRCIRDTyV/E9MI5l1cfo52hm3D14pspIN7B9/xeIvT7ieOigsxyqFzj5oKnYQWcRdCPng6RUu9z2XSMjNaVJ09mv6BqGpBmpDirc2Zv5NTAN2a1Gs2ayJ2tnueSxDkaqgb6xOnBmuqoCNnYmdhFAgMUERwNJ3ej8BnP58xORorVFKJSeBK60Xz8BAe7jCdldIAJ9e9xFsHR0nASyVROXOrwL0Otuos2YUOxThQVprjq5+V8ayxcHDpjTPxrvqP0aj1criikMB8Ck/zb621Poaq5Gvz70b241y85Yv5XTfB1eewrqn/oLT+SxDz98PZ5yc2u/9yabPcNmsG8bc5tM3Tryj9aGlmYfqh++ZGEUVi2vWbdWs2qjxmVBfpVi3VbOpS/PS6h3/Zjz08uRO1D69MvN+nkleX7F+ZPnydZrl63L5jWoG8tN375u3j9zPk29MfJ/NtYprb4vzvUu9PRKtFJgmYNvgG/u7Pde/uPABiQJQWKaSCuAyMGECOBwOHxeJRB5JXj5pvO0ikcgD+QxMQEfsrTHL9DiXxdQMVwCXC78RJK5tqoKK3Vq8lWhLDGUudhT5tcCjFcB2HKyQorNvZFn71pFvjK092dtXOG7mjv1kpCdLt/Um/u3qH1k2nPwFCPq15yeBK+bwplL8Th9OmJsq0TdUl9iEZUoZnu8BbJTkO2PyfMqP7UapMKrGrJMK4PLX7WxldfRVDpQEsMhig72KR3vuYFndxallH5zxtSnd19HVZ05qO58RmHijLLex4ibG4sVU7HcGmn6uaF8GQEWyj/lkLG5TVAbBMuG848Y/TPdbioWzFAtnjSzbf+xcVjvUvkXjak1rg8Jn5Wd/dviEsNYax03sU2kSBQEDQ9C+fjMtLTOoCcFgNFkdnNwtdNzEdrE41CV/DhwnmWzUiargXHvBD8cz0TKRm64+jY7HUX45QburcIhjGlIBXA4mUwH8Y2Df5OWbx9lGAwvzEpFIyVYBPPxz5Wrt8Tq60uDoOKYyy+a1NLFwiPO7Bx0O2cNbz8pNzhpaahWCO+KtV3jE8HC5K86xmFnvnSif7HU9v9NtmdLfKheGMdIWLtECorQ+3waGdz/ISR4Pb6f5VACbGFF3kC5nCzN9c1PrbB3FkulGyt7dXTdxYOWJxQ5DeFBMD3Fh8zUFf9zjqs/hge4/cFLt+ZO+zRN7vc1RjzWgTJP7e25JLd+34qgx244eoVeMtm1zmhX5/oUZ3sdTSmEl62sU4LfAXwUD1Q5NNYlt/KOyENm+6Y3hbaYY5uh9zrYm+MxN8bTXv7T2WbzCjoO2bbDGppImakMpRdgAACAASURBVGEpStPG2Nu0moljTFHaJkwARyKRfdMu53huUUyXgWhiaLXYOS5OWR1cmsrC0XGWLvFeleVwHzH53Zh+cSeRyGys8VbqSKM9X3FfzLPb3vprTY5SiYS5ZZboJHB4uwIYyJh4pRyMPkkw3Lt+XWwFke7f8tGZ306ti+sYPiNY6BBFAe0eOIjHev9S7DCER7VH38jo/1soj/QmJm87qfZ81kRfY3X0VY6vOTe13h3vt85xwDBYGNifSrOWk2vey8qh5yZ8PJmzozDWbR253O908/Lgv1ha94HiBVSirGQLCJWlBcR8/z6FD0hMuzb/IsxBiDua0jxiEcMmlSUKh8OzJt5K5Fu2Sqq3NyVmfB2KQdAvH76d5WoHQ+XcCtuzTGUR1zb/fN57SRjXTU7sUEY/GhpvTiBhxzU+D76tNa7n//6mmajEKQbvvZMmZqiR/KRRghXApVi1XG58yo+tY/xyy1X0O90Z654buL+sTtKKsfYOHVHsEISHhYxqmqzCJ4D3qhh5X/5406e5p+smfrvlq6llD4wzEZ2rNGjNR2Z+i/c3XclM3zxiemja4xWTc+0FiZ3juKMZcvs5qupdE9xCjHb4IsVhiwy0bUsLiF2IRntyErgBp6cs5xmaTpNNEawAaoavhMPhOyKRyFnTE5IYppSBq10MNZKn36tNMWTD6k2atze5HLbIe5WepcTRDqbHKxJzMdwCwouTWDluolqwnKQnv7xkeGZlr9F4fxK44R7AWmu290JD9cgQwp3pG6e1xk5WZuu0ftgvvq05cGHpfo8bxkgf6NLsAaw8PgmcZsgXp6aMexZays8NGz8OJFo+pNuv4piyfd5ixLHVckghsmuPvcH8QOErCi9q/gpfWns6m+21qWWvDD7G77Zey5n1H2P3wIFjbjO7qwHXiKNjsdQyQ5m4Jfa7WM4qg4pj9zHY0g1UDVFl1hU7pJJTW6Woq1LEt45tAdEZ38T62MoiRSamk0JNW5u89N7hAD3ONrbFN9Dm34MVQ8/w26259X3fI7iEsxo+SY3ZgKX83NN5Ew/33g7APhVHcVzNOfQ429gzeCh+FWRIDxBUoZF4cOlzugiZNcnRjRpXO5jKSo1kdbB5vPevLKk8hR5nG7ds/Tpb4+smHWOLbyGfavlJTs8rXyabIhi9931CnuMQWfyz+7fUmk0cVrUsteypFS53/jvxyfvku/KfuIy6AzzZd3fGMKdy5uJgKLNs6r9M5Uu0gDjIewmlxDBxRXTiTUuGZYDtwTeP7YDPg+c1XO2ilPfem+lMIzGC8zM3jZ5ROn8zV482nAAuxTSXoRLV/QAGJg4eKw2YgIGB4+UXXmt+fupjfNLdTo3ZWOxo8uL+nltYWndh6rqZNgpn9PvH65NGivx4tPcOTqu7BFOZ9DldrIutYPfggVhKqst2NeuiK2iPvcGR1WcA0Oxro8Kc/CRq+eRg850Nl3JCzXt4qOc2AF4eeJSXBx7Nuv3izW10G6shPj37CiI/ZtUrNnZqqkPd8huTo1sfifPMSs1pB5uJCuBRLSCi7iD7hY4tUnRiulkGDMYm3u6Nwad5of9B3tP0BQBsHcPRNoFkkvXlwUfxqyD3d/+etbHXdzquk2remzEqY+XQc1zfkb21y6uDj/Pq4OM7/ZjD7u66cUq3K+bow8kmgD2Y4hhLKbUM+D5gAjdprb9Z5JB2yvHV5/Ln7d/j0MpTUxUw5xxjcsNdiQOkmXX5P2qN6kEe6fnTLpMAdrSdcfBZ6ixlYbt2oteuxz61Xk1K7gzThKjHXmcgNfOy15RCBbBlZJ7dPmih4o31moHkmYvj9zVoaVA8+6bLqUsMtvbAqo0ujpv4Tm5rUvQOQt+gZmtPop1EY7Vi77kGdVUQsxOfTUWicMKL7VpyYaiR7xpDmaVXAez1HsBaY7oGtp7EHneJOLHmvIzr6TvBjrYLHY7wgCWVp9DvdFFjNfK19e8Zs35Z7cUcW/OfmPimVBGeXoFpePQkpNY60Sffo/EVyub4WlZHX+XI6jNYF1uJrWP4KM6JgM+13MS3N1xCuPb9LKv9IA5x/qf9dEx8XDfnrjHb91VE2dQaRa/OTACvib5aqJDFJLQ1wcurNW2zusvqGLAQegdH9pGztYAY0v1SVV2mlFIowyXuTPwb9VDPH1kVfYnn1t4/qfv2qwoumfENHG0z0zePHmcbs3wL2GivZpZvfqo6OL1KePS+wKmjenlrrXFx6XW2UWXWY6mx7cRG36dGE9ODqUR1+nNPHwWqtcbWUfxGcKdGhxbLZL/1rHA4fCIjBUqjrxOJRB7Id3C5UEqZwI+AMLAOeFop9VetdclORXlC7Xt4uPd2Bt1eQmaiA8fCWQbXXqAYjEFFIP9vNlc79Lldeb9fr4pru6z6CxpY9MfiBP3Q77FS254BzbZejTmj2JHkj2WOVD96iWbsD6MXJHoAe/vg1jAUroalSwxOO3jkjEVHRwetra2p64fvmXgeu7WMXJ6UUfNZPf66S8AHpx9WmmdHlFIjCWAMnGmqkp4uhjLQ3vuojHA1UV+cLXY7jVZLsaPJi9ETQaafFHJLrIJc5Mei4MF0O1uosbJXuf+j+xf8o/sXBY4qD9ZOvEkpuGTGN7DwU2s1scVup8vZwh3bv5+3+z+t7kP8vevm1PXFwcPYaq/nho0fJ1x7AWaWA/dCaLBaCddemKpEHz5e2LPikKz7WG/Xb2ZzVRS9MvNE1tzA3tMfrJi0phpFVYUmYFQSMopTXV6q2poUr61N7vTZY1tADLkDVBhVRYhMTDcTH6bpjEkAuzoxv0v6d+Kq6EuYWLy/6Uoe7/srH2z+GqaycLWDwpjwGLXSrAWgxb8gtWz4NpM9vlVKYWJSZ42feBh9nwpFUFXucNvhy34VzCkeL5lsAngzkL7ntW3UdQ0szFdQU3QY8KbWehWAUupW4EygZBPAIaOasxs+RUwPERppwUxlUFE5TZNix7VNvTlzeu7cg+LYRduxnA6msog5Q/gtxdMrHY7bx6Ay6I0vJq1hwSxVLsdDAFiG8lyltZeVQgVwobka7n/R5R2HeDsxPh7TSJ8EzsTVpZXAU3i7BzDaxUDxQv9DLK44rNjR7LTExKuZ7/V5acmRYkz2JIqv1mxmTfR15gQWc0rtBYRr3598r4ycLIi6g6wYeobO+Cae7rsXF4d31F3CgNvLHP+edDlbqLdmYmDQHltOQIVo9rVRb87EZwQAaI++wf3dt/D60L93GE+lUctM3zzWxpaD1rQFFuFXFbTHljPbtzuDbh9Bo4o9gkuos5rpjG+k0qyjx9lOV3wTnfFN1MRmQUWc/ULHcPu277Ck8hQG3F4222uYH9wXA5NZvvnsHzqObfEN9LtdzLDmsi62kkG3l6BRScio4dXBx6k26wkZNckJxQZZMfhsqp9hvlWbDfQ62zOW3bT5i9PyWMPSk78AfiNIr9MJJCqtilUVbSqTU2rfN2b5oNubdXu/Th5PjGoB8a/eO8ZUp4niCfpgKDY8CrQ0T74Xi5m2C6+jUVQgkLE+rqP4VEOBoxKFYCoLw7SxnZG8yfb4xlSrhX0qjuakmvOYlUzafn3u3QDsHToytb0hnzdPmFQCOBKJzJ/mOPJhNtCedn0dcHj6BkqpDwMfBvjv//5vOjo6ChfdFPW7g6xT7QyowlRVbdXrUY5ZEq9NPmx3t7JVbaO310dHx0Cxw9lpnbqTzYPd+Ho7MXSQ55d3s3BGbkOHt2/fPvFGU/Dv1yuZ02DT29RLx0B5vL96ewL0+vvpiHvr+fT1hjz5fu52u9nYuynrMBwv6elNDP1Jfw2n63OR6C0Ma9dtZGggSEfH4DQ9zvTo7g6wwbQZDLlsdztZ7j5VUr8f23Un8cEBz8bc22MxP9pMQ3COZ2PM5bMR1zb9epCO/uzPpdVenPE8e53y+b0Q4zN1FW+6r7Cq+zVe1Y+wT/9JWbdrZDca2Y3dOSqxoAvqAReoYTYO4ACzSJxUiANb2DbyOFSzlI+y1ProxEE5kCpWHz6vZaRddoD+xMWZLB5z8+3d22kwGyAGHzZvgKG0lYMj/27t2Q4ECDGTPqLUMZf0AdRLOD3jfi1qOJB3cKD1jomfw1QVcFT86OG8rnZ4euhuNg1toJVFdPd2ee474IT4B7J+H6vk7nbPtm30pq2fxW6e/f4utOnbl8pNd0+I4PYtOMpCKfnbTEav0wt9vZxxkENHRxTd0QF+Pyrtvb3Z3YhSIZDXNGde+WyMp9/tZ2usg63bmujoSPygPePeA0Ajbbw6+BivDj4GwPHGe+U7z8N2qcY3WuufAz8HuOaaa3T6cF6v6hpoocaqodU/tVgH3T78KjjpHkdurJ/tGzOHOpezN3tCtFXNYeXGIK2tpd+zSMWidHXaNJj1nNQEv/qnn+9dmnuybTr+/gt7XPZsUzwTr6a1rjzeX5uHXHorKmlt8dbzqd7gePL9XN1dSWtNq+cTwNUbHBSMeQ2n53sxMVS0sXkWTX0ura310/AY06ej36W5WdFcq3i56z78vcGS+v2IDm2nO+TdmKtW9WNRia/aoLXWmzHC5D8bQ24/9X31tNZkbr/H5iVc1PwVIt2/o6W2JZUM+vfaOzmr9WN5j1d4z/YN7Wyy13Buw2dprfLuez0XXv1e8bp/be2mosJPx7YVaMumteWyYoc0Yi3s2bpf1mG/Fa8NMGPLINUVFdSk/e336j6UGTXNnt/3KRQvfC6qNzjU1FfT4m+h2Vf8eEqBf0sV979RyXcvsVBKMVhVhdncjD/t79neF2J2cA51VnMRIy1dXvhsjKe9r4mZRgPb+2tpbU1UeT/TfjdXz/4jlWYtz/c/wK3brgdgg/8N3jFDRj14VTklgNcDc9KutyWXlTS/UUHMHZp4w3Fcs+5sFIpvzv0HAC8NPMItW6+j1mxmv9AxaK3ZK3Q4c/17ETAqsN0oc/175St8z4trG0v5ymZQuk/56R60CURht1mJZzUU0wT9xX+GQ7Ym4FPouIeHW+fIMr032Z6XuWjP9wAGGBhKvF8L4aJTTH71T4e3N2p8ZvE/p7ky0iacXFr7AZbWltYOn/d7ALv48LMmVrLdrDI42snadumSGd8A4KGe23io5zaun3svAPuHjitofKJ4NtlrADikammRIxHFVmnWcV/3bwAYGKfdQrFcNfu2cXs+6liMg2/dhj4wc3KIgFFBTA9JAthDegdgxji/RyK7ngEFuCMTYWVtARHDpwJZbi1KnYmFMm3s5KD0B7r/QFQPpPr1HlR5Ehvtt3lr6EWW1V1cxEjFRMopAfw0sIdSagGJxO95wHuLG9LO86vgTu38nFRzPg/23Mbla0/NWN7tbOFfvf8HwGN9f8lY12TNJuYOsTW+nlb/blN+7FIQ1zYmPlZvKq2+leNJ9OeJ01wLM+oSP9Bf/HWu7UOaGa5KzKdFsxXH7gNq0MvZltxYaf1PxcQ0GqMEEsArO1zamgrzPrWSQ4x/+U+HC04svd5YhhqZCLEUJ0JQGLhe7wFsGMz27V7sSPLCwcZk4vf5tvgGnuq7h2ZrzoTbCiHKS0BVUGM2cGLNe7h9+3eKHU6GKnP80VW1gyEquhxiTz+dsdyvKoi6gzLhmIfE4po49phJScX4FBYYcSCR4NXRKPj9GdsMF1aJ8mMqC5SN48Lvtl7LywOPsl/o2IxtTqv7UJGiE7komwSw1jqulPo4cC+Jrl2/0Fq/WuSwdppfBenSW6Z8e4VCk3kmeriyJp2rXb62/t0MuL30OV1cte5Mqow6rmq7bcqPXQpeHniUpXUXMndG6SUusjGVRW80znDHj3OONvjTY+6Ob1QgK9ZrTEPx0sAjhOsuKHY4eWGaI8kvMQlal0SScFMXnFagSdn2njPyelgleBxiqNKugjcw0Hj4CWidKLMuE+NVAI/2/zZ8lEarlb0rjpxwW1Eesu2bil3XgsB+HFwZ9lwCeEfOPvlnbPjyMfgvPjRjuU8FiOmpj+YU+ddYo3C1I8nKHMRiFsful3bQ4zgoKzOVJAng8mUpH06yCf7rA08CiTyKKD05JYDD4fAPgFsjkcjjacuOAt4diUQ+le/gcqW1vge4p9hx5JPfCBJzJzcp0A0bL+OyWTfwmy1f5cLmq9ke38gryWbcsOOda0MZfLntTwCpauE+t4vr1r+PfSuOZlHFEhwdJ9L9O/auOIJZvvn0ud10x7dgKotKo5YN9ir2DR3Nwz1/otqsp8FqAWDF4LMcWnUqXfHNbLLX0Ot2Muj2sT2+AYD/qP84MT2EgUnIqMbFpdKo4ZHeP6NQxLXNfqFjaLBacHScmB6i19mGqXyEjBo22aupMRu5u+tGFgUPJmCE2C1wAI/1/oX5gX2Z5ZvP2thyDqo8EYBfbfkys/170GzNZnN8LZCYyd5xEwnKUmbiY9C2U/mCo/c2OXIvAyOHpFtHx/T1gHZ0nAOTf4dyYBrgFmZ+RlFg+80rzHeBUirVBqI/WpCHzCtV4glgpRTawxXA2nVBKW8nqXMw0azrl828gRs2XUZMD7HBXsWSypMLGJ0Qwise6PkDS+suLHYYOVEVFeienjHL/SqIvRPt/MQ00IlkpbGD3yMxYlOn5qVVBteclJYAjsdhVALY1Y5UVZcpEx8OiYPeODafmvVTup2tRY5KTEWuFcDnA58btexZ4C9A0RPA5civgpM6azzk9rMutoLO+GZeHXyMW7Zex0sDjzDHv5j3NV3JLVuvnfRjXjfnLh7rvZN7um6ix9nK43138njfnan1G+23x73tM/33ZV1+Z+eb497mL50/nDCmtbHXJ9wGYMXQs8DIGakt8XWpdS8OPJS6vD62kvWxlanrQR9EbQiVeNsiS1kE/DY1FSPJq1ySv9NtyO0naFQWO4y88WoPYA+GVFI+d5aFUcCTQQcsMFi6RDOnQG0n8skwhmdxL73YIdECwtM9gLVOZNnLwD2dN9HpbGKGNXfcbarNhozrQ+7AdIclhPCYR3vvSI1ePLgyXORoJk8FAtR8/vNoO7ONWrezhe3xDbQFFhUpMjGaUuDiYCHVqpPxzT/FMdosMEZaJup4fEwFsKY0RvqJ3JnKwtGJ77YTat5Ni38BLSwoclRiKnJNAGsY08DRzLJM5IlP+Ynr2ITb9TvdANyw8eNAYrI3gFm++ewfOpb95vxj0o9pKT/H15zL8TXnTiHi0uSzSDQ1L/EEsKl8xHV89AlZz7B1DJ/yT7xhibBMhStNgMvO7MbC77yednBpVkyk9wAuRZ7vAexqlGGgSjTBnu7h3tsBOKzqHeNuU2s1cXz1ualt5wT2LEhsQgjvmONfxFvRFwF4d+PouiNvq7nsMrq/k9m2Yk5gMd3xqbfzE9PDkQrgSdHJ45ymaou4Thv2mKUCWJQvS1k4Oo4GHur5o/T7LWG5Jm4fBa4Nh8MGQPLfa5LLxTRIJPQmnpBro72aC5qupt/tzljeHlsOlObkPIXkMxV2GcwDZ2Il+i959JRMXMewyikB7NFJ4OTTLgql5HsAK49XACdbQJQ6nfZFOdFEkMMjeQD2DB66gy2FEOXo8Kp30GS1FTuMqRv1nR1QFUT15Nr5icKJ6zhmshauq6+Ed2SmWd8QzJuh0K4PNy0BrLP0AC6Hk9Uiu+Gc1NsbNSfVnF/scMROyDVN9EngFGBDOBx+CugAwsBl+Q5MJJgkzrZMZJO9mgqjkmojc/jkRnv1NEVWXlIVwCVOKcVG80l8Hj0ha5dbAtgE19PZIyGml2GUdgJY4e0ewOUyCdyAO9IXc6IDxA32qtRlQ5X+cxdC5KbZN4djqv+j2GHkjaksnu+/v9hhiCyUUnT2ab7yh7iM6BtH7wDs1qKY02gRZ8cVwOUyX4EYy8KHg83clkEe7rm92OGInZBTmigSiawLh8NLgMOAOUA78FQkEinhAaDeNtnK3TXR1zmg8kRieojPtPycZ/si2DrKquhL0xxheege0FgmtDSUfjKvIbbE0xXA5dQCwjQTBXrf3/DffLLlR8UOR4iCMxQ4JbwHYGB6+4DFdcEwcHFTE7TuyGl1F/P3rl9MSyh15gwarFmsir7EkVVn8ETfXewePIgt8fWENlTS5t8TF4dqs4GAqmBN9DX2CC5ha3w9T/TdlbqfPSsO2eHjKIxU/08hxK6n1b8brf7dih1G3tSbM2WyJA8aPhnZviWxD9AzAHXlM01J3rzW7lIVhAUL/KkesJDsAWxKC41dhZlsARFXfbyz/sPFDkfshAkTwOFw+LhIJPJI8vJJaau2ASHghHA4TCQSeWCaYhSTsHzoKS4yv0pUDzDDmsuJtedhYuE3gsUOrSTMblBeTgHkRGl/QSewysUGe1V5VQAb4GpNhz3+JIdClDNV4i0gvF4B7Pb3Y/T28kDP7ye1/XQlfwG6nM10OZsBUgndN4eeB6Dbhg1ZJohdPvRU6vIs3wI22m8z17/XDh9ntn939gwewv2TfM5CCOFlSin2rTim2GGINOm/+r/8Z6IH4Fd+H+fq8y0qg+C3vHkcVWj9Q5q7n3b51JkmA8rC1Wn9EuNx8GVOoictIMpXXNt0xN7CVrPGTNgrSstkKoB/DOybvHzzONtoYGFeIhI52xBLDJdUSlFrNqOUokJVFTmq0uL3JYa4iOnVEXuLA0LHFzuMvDGNxCQSZs7zaQpRHgzlzT7Yk6WUgevh4xUV8KNqawH4TMvPGXB6qbdmUG02pCplTTVqCKYu7CzcHR0dtLa2Tmrba9rPnvAAMaaH2D90vCSAhRBl4/6eW1had2GxwxDj+NxZFt++I85X/5BocRA+0CDygsslS01uus/hkqUmM+oUfh+s3awxFLy02mXdVk3H9iIHXwAtDYq3bYs4aRXAjoMa1aLK0yOqxE6pNGuptZrZrgYIqlCxwxE7YcKsRSQS2Tft8oLpDUdMxVtDL3J2w6cA+GLrb4scTWnSGlZv1uwzb+w6x9WYHq2ozc67sbb4F9JgtRQ7jLwxDFgVlD5IYtdlGIkuBaXKwPB0BTCuBsvi63PuwVQm+EZvMLbfj5cnfXVxURPMum67URm9JIQoWe7GjWjXHZMcs8usDVopG/6VdF3NvBmK2Y2Kb11s8flfJBLAkRcSOzY33edk/FssdZXQ1Q9VQVi6xODFVZrj9zPwmdA9kBiN5TMTuwxbujU1IUXPgMbV4DhQEUisVwoaaxSOA4Mx2NarmVmnWLtFM6teEfAlRjdW+BPr95qj8CWroa34xPMSSQVw+bLwsTa6nKgZBGqLHY7YCTmVrYXD4c9FIpFvZ1n+mUgk8t38hSVyUW02MNOXyFx6+cDPy2pCisbqzGXbezVfuzXxQ/e9S8ccdYspiGu7rFpAmB7ttezhdJYoM4ZSJT1xivJ8AjhRYWNOkDQtFRoXY4IDxJBZg18F+a+ZslsphCg9/bfeSvUnPoHV1pZadmDoRN4aepHFFYcWMTKRTqPpHoAj9kzszFumSh3vDUQ1UTuxn18TUsTiOplA9cZx9rH75Pf+Dt594m0MLOLERhZ45LUQhREyq2mwZtGrhvCpGcUOR+yEXNMXV4+z/MqdDURM7A9bv5F1eVQPEjCkFH9nBHwQjSeSAANRzadvtFPJX4Bv3G7jlnKjS48ot0nglILK+DwWBQ/mZ5s+X+xwhCg4o8R7ABvKQHv4GEY7bllNsuLioibY9fz4zB9QZdYxP5DnI1whhCgQPZDZV+7gyjAPdEtbG6+wkpM49w5qqirGrg8FFPVVippQYgfBbynPJH+LxVAmjp6gEnoXf43KmYkPVzuYOkilWVPscMROmFQFcNrkb2Y4HD6RzDHmC4HefAcmRmg0UXeAFwYe4ny+OGb9gNtNyKjOcksxWQEfvNmhOX5fWLtF01QD5x9vsnCWwadvtNncBZ+9Oc53L7E8vwPg5f5Lto5hqvKppjaUwtKVBFSIFUOPMuj2U2EUfwphb79DRTkp9RYQCgPX0xXAbuJFLhNauxhqx89novVCCOF10aefxrdoUer6bsEDuHnLl4oYkUi3qUtTOxuGYol2B2JiprJwJ2gBUdKTQogdUkqBUrjEymo0765osi0ghid/CwLpU0xrYCNwWT6DEpneGHqagJHl9GTS37t+wQk17ylgROXHNBQt9Ym02dubNEsPSiR/AQ7eXfHsm8PVwVAprQmnzNVO2QxlHnZg1zcxG/8Ag/B4752cXPveYofkWV4+OSGmptQrgBMTqXn4CThOeSWAJ1EBLIQQpazuuutwt27NWGYqS/qjesi8ZkUniQRwY438XSbDxMSluL2QRZFpjaPKazTvrmhSCeDhyd/C4fBvIpGITGFaYOtiK6gwqoodRtlbty2RBLjvOZcvvXvko3H20SZHLtb0D0Fnn/cTwKs3adir2FHsOgwsHuj5AwD3df9aEsA7IAc/5UeVegJYKRwF/3rV4Zh9PHhyynVhF2sBIYQQpSxwzDHEnn9+zPLjqs/h1YHH2Sd0VBGiEukCfoXjwuvtLsftWz6/sdMp0QJiggpgUfa08tZ8Pq7WbO6CWfVyjDlZOU0CJ8nf4miwWvCrIHP8i8es2xbfUISIytPcZoXrambVQ3PtyJdIhV+xW4vimZUuz7/l0tY08Y5C3NGs26qZP7PwB7oLZnr3C1ASgEKUF0OV9og/AwNHGdz1lOvJBLB2y6sCGKTFgxCivCnTTIzeGOXh3tuhF66fe28RohLpfMkewG9v0px9dLGjKQ0mFk56BXAp7/yJKXOJYeicUogT0lrjanhzg+bvz7is2Zz9vXXecSbNtfDYay7PvZW5zYeWmuw7T/YvJyPnv144HA4D5wPNkUjkjHA4fAhQE4lEHsh7dAKAz7b8nBs3X5G1Cvh/Oy4qfEBl6sGXXO59zmVWffb1c5oVtzzkoJPbTk5hh8qcuL9BT8PKgj5mLlbHXi12CNPmPY1fYMXgM8UOQ4iCKocewI6CWDyxAzrc4z39clE5LsrwXmJaCCHEQ0FapgAAIABJREFUOHw+tG0XOwqxAz4L1juvceBCA8v0wG99CTCUiZs+CZwX9pFEwSkzhnb8kGXXdDiR67jwwIsupy5JJGQffdXllTWaj73TSm2Xvr/9mZvGVpZ//iyLb92RufzWRzLzKle+x2Jjp2Zjp+bm+xxG513OPtrgmL0Lsw/tuJprfh+nbzBx/X/eY3HdbeNXzNdXwdXnF2depJwSwOFw+DLgk8BNwNnJxYPADwAZzzJNLOWnz+mm1d+Udf0RVacXOKLyFJtgVMvMOsVRexmp5O9hixRPrfDW2c8HX3KpP2B+scMY13x/ec7qfnbDp5kf2IdtdkexQxGioBI9gL31PZgLAwM3uROabQe0+PZhmfnvYgchhBBikpRlQXzs78mVs2/l7103Z7mFKDS/BTMc6ZeXCwMTBy/uJ4lCMg2wHUW2jpjfuiPOhu0j1+99LrNC5NM3jn9ibN95iqP3Mlg8Z6SK97uXWKlEce+gJuCD9ds085oVhpFY3lij2GceHLSbwdduzXx//vkxl2dWapYeZHDjvdmL8ppqYGsPHL5I4fcpKvywdotm+brEsc2ZRxg8s9Jl/bbEaPEDFijiDhy5l8FDL7s88GL2KpgdJX8BzjiseMUduVYAfwo4ORKJrA6Hw5cnly0H9sxvWGI0Ww/hV4Exy0+ueR9L66QzRz589xKLzd2JMzLjOfcYk3OPGfnAnn/8+Nte9Tubr72/sGd2fvS3OKv6fLjawSizyda87LCqZYB3JjnzRhRiV1Dyk8AlewAvblMsX6eZN0MR8IEdh5YGRd+g5qXVmU+wJpQ4ITijTtHWqNjWq5nTpPjlP8fuXB6+p+LfbyRuX10BvYMj6xbNVnT3a3yWYsFMxRvrXDZ3Q8AHrQ2KtzdpTuAFVJm1gBBCiHKmxqkArjbrqTdnFiEiMZrfAicu+8u5MJWVWQGcJq5t3hp6ocARiUJ7pPfP7GaeRdRO7NOONpz8bW2Az55l8dlkYcUV51rMrFOpBPC1F1g8+6ZLLA6zGxWrN2tOO3hs3iJ9JF51ReLyeK0uG6oV37t0JO8yXFm8ZrPmxnsdQgG47AyL6/+UmZjd2pP4998rNNm+Ee58ciTBu3aLZu2WxDZ/fzYz8fuuww1O3L80ci+5JoCrgfbk5eFXyAfE8haRyKrb2YpPBTISe1pr6amaR0opZtbl7/4KnfwFWLVRY82vZMjtJ2TWFPzxd3XDn8c10de4q/OnnNXwSSqNWmJ6CEv56Ixvptqsw1Q+ep1OKo0aOuy3CBnVLAjsz8M9f2RxxWE0Wi10xFYRJ0alUYtP+aky67GUn674Jhqt2cT0IAoDS/lTj6uR7wRRWKXfAsLEVbBkd4OPnLZzidbvXZr99ucdN9l7GLvj2POjp3jSDE09KI9ZVvvBYocghBDTa5wKYIA1sdcLHIzIxjLBdQ3ZY86BiYk7TmvDAbeHP277DkdUvbPAUYlCOrb6LDZ3wVAy8+e4ms/dnPiu+8LZFg3VcNV5I/mP9ITs6Ovpky/uNSf/sSqVSAhv79X4LahKJpBHxzTMSatmMY2Jvxk80ypuCnJNAD8CXAFcl7bsE8CDeYtIjKvCqMbBwUgeJEb1AAEjy+kXscvae67CmFlHr9uZSgB3xbewPraSZl8brnapMKowlUVc2wy6vayLrUxVl4fMGla4L3Hzur9zQfPV2DqKX1Xg6DjNvtlssdcRNCoZcHuxlI+NsdXUWTOY6ZuHo218KkCf24mrXSzlx68C2DrGCwMPcmTVGcV8aQrqJ5s+i8bl+xs/lvNt7+3+1U4//oncs9P3IcRklHwFMApHKSyvFtnGYmBWFzuKvDmx9rxihyCEENNKWRZ6nATwvMDeONrBlFF6RWVaNtq1pAI4B4YycXT293WiQM2rO1Iin7b0aH74UJzoqEEO//tnb7YHaaieXJJ2MknfdKWa/IXcE8CXAXeFw+FLgepwOPwG0AtIE9oCqDAqk0k2PwB3df6UzXY7x9WcU+TIhFd8aKnFawOVfHfDhwG4bNYPuWHjx6d0Xz/Z9Jl8hsaDPbdySs3783qfXnVSzfmcUvt+DGXgaheNi6kyv24TyzUK6HO6qDRrU4l50FjJz/no2yTu00lOxuAyMhhDoXH5w9ZvTvfTmzKvtMgQ+aNUaU8EbSgDRyl8+Z3QOG+iTz+N+uBpxQ5DCCHEZO2gArjSqOHvXTdxev1HChyUSGeYNq5jSQVwDkwsnHFaQDg6joGJkiRwWVMoqoKatcnk7/nHmxy4UOG3Eu0dLDmvVRJyOuSJRCIbwuHwocChwDwS7SCeikQiJTwAtHSYypfxxftM/32c13j5Dm4hdkV7h45MXR5O/l4/995J376jo4PW1ta8x/WbLV+h3+3O+/161fCZ8MS/Y3eI0s+U11iNqcuWGr91yMh9mmPuI7kFlUYdpux/iQIp9RYQAIMqQM+AN7PY/kMOKXYIQgghcmGaaCd7omyOf0/u7PyRJICLzPLZuPHCt+orZYayxm0BESeOQmFmaWUlysucJsVrjG2l8IGTTQ5cKAegpSCnv1I4HPYDlwIXAWcAHwN+FQ6Hf5P/0MRoid47mWeUD6o8qUjRCC+7avZtqcu5JH+n04GVJ7E+9maxw5hWwxWu7bHlRYuhQtWQ4yiWgpH+xOWn1FtAAPhxaa4u8Sy2EEIITxgeGqzjcYYefTRj3ZzAnpxQ855ihCXSKMPGdX0yLi0HBsa4k8A52qbL2cIme02BoxKFZhjw3UvG1pBK8rd05Dro8dfAAcBdwKb8hyPG8/mWX7Aq+nKq906/083i4GFFjkp4VZVZ55nE77CgChU1MVoI/+67BxeHFUPPFi0GrRM/zkIUQjkkgGOvvcb2a97NunW5fW6DJ57I0IOJKRB8e+2F/Xr2yX38hxyCNX8+A3/6U2pZ7TXX0H3NNQSOPBLfAQfQ99OfJu5n333xH3QQ/b/9LaGzz8Zevhwufu8Un5kQQohi6f3xj+n59reZvWZNRr9IM+fDb5FvDjY4Pu/2//egHfU8dbSNxsXBm31gRX74DD/9Tk9J978VuSeAlwELIpFI13QEI8bX5JvN2tjrqQRwl7OF/ULHFjkqISavyqwr+x6wLf6FPNhzK1VGfdFicDXSAkIUTKn3AAYwFyzEcHMfnTCc/AXGTf4CxJ55htgzz2Qs677mGgCiTzxB9IknRu7nlVewX3kFgIE//znnmIQQQhRf389+hh4cTFyJxSAQSK27v+cWltZdWKTIBEBc2/QP+GjvLfEdGI9IzF/CLjXh964ooEJs1xuLHYbYSbkmgNcCgQm3EtPCwEqdWdtsryVoVBY5IiEmr8W3kCtaf1vsMKZVhVEFwGWzflC0GLQkgEUBlUMVgG//AwidOJu2b9xV7FCyer2rvL83hRCi3Awnf6suvhg9OIhKSwA3W3Ow3Sg+Qw6pc9HrdALwdvRlXh14jPObvjjl+7J1lLWb/Fx6iOww5yKjkCft7L+tYwD4lLyny1nQqCTqDhQ7DLGTck0A/wa4MxwOf59RLSAikcgDeYtKZGUpK1UBrNHM9M0rckRCTJ5SinprRrHDyLv02oEDQsfx0sDD1BXxeWrA8GoTYCE8SCuDus99tthhCCGEKCPVn/gEZmsremgoY/lM3zyuXPcuz7Vqmw6OjtPvdlNtNACgk0lDrTUDbi9Dup/XBp6gyqyj0qjloZ7beHfj59BoLOUjoEJ0O1u5Y/v3WRV9KfO+tzi8v/nKScXRHn2DOzt/zMdnfR+AuI7hxv34ZM6ynGTM5ZFWANBhvwVIArjcaVxeGHiI85n6yRdRfLkmgD+e/Pfro5ZrYOHOhyN2xExLAD/W+xcunfHNIkckhEi3b+iYYoeQ6AEs+V8hJk0jnxkhhBD50/S73xE87jj6fv1r3O5uzFmzUuve33QlV7Qvw9UuhirdClRXOxjKRGuNxuWVwce5Zeu1E99w7Y5Xf6PjgqzLW3wL2WSv4XOtN9Md38LPNn+ey9eeioHJJTO+gYvDbP8e/KPrF2yx17Eq+hLVRgO97vYx92XrGJe9M8iCYOm+/l6yPrYSQKray5wk+MtDTgngSCSyYLoCERMz8REn0WMnZNQQUKEiRySE8BrpASxEbmTiRCGEEPkUPO64xAXDwO3KnDpnuHXSF9tPA+Ci5q/Q5t+TarOeH238FGc1fIIW//TXVbnaRaG4on0ZQE4Vyc/1389t2/53h9vsFTyc0+s/QpVZh6V8PNh9G5292zhp1rmEjGoqjGpgbCspRzsYGCilUhXDo7dptFoAOKLqdJ7s+xs/3/yFrDGMTv4+1nsnR1efSVzbhJKPL3beG4PP4FMB/JIgLGv7hY7dJUYulDuZhrSEJCqAEwngzvjGsui9KESpG/0pvHL2rUWJY5gks4TIjVTNCyGEmA5GVRXxtWsJHH54xvLr5vwNE4sr2pfxqy1fzlj3/zb+FwBXz76dQbeXJt/saYltOAE97PK1p6Zi+9WWq1k59NyE93FG3Uc5pGrppOalCdddQMdAB02+1h1uZ6qRvgw7OtYdTkSdWncRQVWJrYewdYwqsy7r9l3xzXyj44JEAhgbS/knjFlMTlQn+sJKhagQ3pdTAjgcDn91nFVRYB3wj0gksmmcbcROspSPoWTj7UXBQ4ocjRAim2qzvqiPL8ksIXIjLSCEEEJMB2vBApztY1sQWMoHZFbd3r7tO5xaexF/6fwhrw4+zlfXn5tad3LN+1had2He4oq6iUnqrmn7MxVGVSr5C/A/7adnvc3R1f/BY71/4bJZP6TVt5tn2lcMV/IGVIgA44+OrbNmcHLN+wB4beAJ6qvLb16S6ZYxCdzwsrTJ4GSCeiG8L9cK4EXAfwJPAe3AHOAw4C7gDODH4XD47Egk8o+8RikAMJUPR8fRWvNE3195V8N/FTskIYTHaGkBIUROpGpeCCHEtPD7IRab1KbnNiYmI72wOVER/LV153FV261cvvZU7u+5hft7buGK1t9Qb82ccjj3dN7Ew723M9e/FyfVnE+FUQVkJqJXDD7LwuB+WStk31Vf6seeiWRlm38PGieoRBaT85fOHwJwUs35RY5ECDEZuR7yGMB5kUjk2Egk8t5IJHIs8G7AiUQiRwAfA2RmsmliYhHH5oWBB2nx71bscIQQHuRqLcksIXKgPfyZcbWbMdO2EEKI0qF8PvQkE8CjXdWWaCl2/dx7uW7O3wD4ZseFXL72VJYPPg1kVl9O5Nsdl/Bw7+0ArI29zlHV78q63aKKg8u2PcL9Pb/n8rWn8sbQ0zKXzhSoMY3v4MWBh4BEKw4hhPflWgF8KjD69M7fgN8mL/8OuGFngxLZWcqHo21u3XY9H2j6SrHDEUJ4kEYqgIXIhdZgejTHqnExcj5XL4QQwguU3z/lBHA6S/m4fu69DDg9fGX9ufxyy5VZt7uw6cvM8i+gzmymM76JgFFByKjlS+3vSG1z7Zy7iOtYqvp3V1Jp1NLvdrNi6NmMXsNiCpInH5ZUnsLBlacUORghxGTlmgB+C/gv4Idpyz6aXA7QBAzkIS6RRWISuDgAe4eOKHI0Qggv0lp5NpklhBe5eLfI1pUEsBBClCwVCOQlATwsZNZw/dx7uXHzFRxWuYw3oy8SUBU82vtnAH6zdfwCoatn345fBfApP74yrfCdyNVtf2TA7eUr684pdiilL7njtCm2mta63YscjBBisnJNAF8C3BEOhy8H1gNtQBw4K7l+T+Cq/IUn0tk6xhN9d7F78KBihyKE8CitwZCiBiEmz8N9s7V2dzgLuhBCCA/z+8G28363l85IdFw8oPIEAE6v/zAAL/Y/BMAmew1HVr+Lf3b/lgqjmlNrL5LfkqSQUc3nWm4udhglTbsj+yaGMuW9JUQJySkBHIlEnguHw3sARwCtwAbgiUgkYifXPwI8kvcoBQB1ZjOLgoewOvpKsUMRQniUTAInimEwplm3VbNHa+m9+VwPTwKncVFSASyEECVJ+XzoaLRgjzecEB72nw2fKNhjl5JmX1uxQyhtsRj4fADM9e9V5GCEELmYylFFA1AHhIDdgQvC4fDFeY1KZOVTflYOPYdfBYsdihAiTS6TcEw3LyezRPn60q/j/Phup9hhTInWYHi0eCXRAkJK+oUQohTtzCRwQniVtm2UP9FGpM/tKnI0Qohc5JQmCIfD/0Gi3+9XgZ8BlyX/vSD/oYnRDGXSEXuT/UPHFTsUIUSSaYDjFjuKERowZCiWKLBj9jY4dp/SPPOQ+MwUO4rsXO1iqNJ8XYUQYpc3TS0ghCgmHYulEsBP9v2tyNEIIXKR61HFtcAHI5HIQUB/8t8PA8/mPTKRlUOcuQEZaiGEV/hMiHuo8FFaQIhiqKqAilKdU0Z7dxI4aQEhhBClSxmGp0aJCZEPOhYD08TRDgEVKnY4Qogc5HpUMTcSidw+atmvgQvzFI+YhCZrdrFDEEIkWRbYHksASwsIUWhaAx5Nok6GVycw0bgYkgAWQgghhEe427cTb2/H1kOEa2UguBClJNejis3hcHhm8vLqcDh8JLAbSIO6Qrl+7r2ePVAVYlfkM5WnKoBdqQAWomy42kVJCwghhBBCeISyLPz774+to/hUoNjhCCFykOtRxY3AMcnL3wMeBF4EfpzPoIQQolRYJtjxYkeRRisUHmpKLHYZcmoy/1xpASGEEKVNWkCIMjPcAzimo/hUqfb/EmLXZOWycSQSuT7t8m/C4fBDQGUkEnk934EJIUQp6BvUdA/AjDqPpL+0CYaDDMwQovRJCwghhChtsWdlqhxRXoYTwFF3gIBRUexwhBA5mFQCOBwOz93B6v5wODw3EomszVNMQghRMhprlLcqH7WBMjzUk0IIMWWudjCkBYQQQpQs/yGHFDsEIfJKx2Lg97M2upxaq7HY4QghcjDZCuDVwPD4lWy5Do2UmwkhdkHVFdA3VOwoRmhtApIAFoUng1zzT0sLCCGEEEJ4iW2jQiH8RoB6c1axoxFC5GCyRxUvAiuBK4F5gG/Uf9Pe/EUp9S2l1HKl1EtKqf9TStUll89XSg0qpV5I/vfT6Y5FCCGGxR14ZY2Heu66BhgeikcIMWUuWlpACCFEKZMewKLM6GgU5fOhtcZvBIsdjhAiB5M6qohEIgcB5wANwGPAPcB5gD8SiTiRSKQQ5WYRYF+t9f7ACuCLaeve0lofmPzvowWIRQghAGiuVcxu9FATCG2ilFQAi8Lz0KegbGjtoqQFhBBClK5YrNgRCJEXOjnWS9s2+P3YMgmcECVn0kcVkUjklUgk8nlgPvBd4HRgQzgcXjJNsWXQWt+ntY4nrz4JtBXicYUQYkcq/DDkoX17nZoETghR6lwcqQAWQogS1vuTnxQ7BCHyy7ZRPh+2jmGpQLGjEULkYCpHFXsAxwNHAs8DnXmNaHIuBv6edn2BUup5pdTDSqljixCPEGIX5bMUsfjE2xWM9AAWRfD8qtJtO+LlwbnSA1gIIUpb9Sc/WewQhMiL4WmvtW2jLCtZAewrclRCiFxMahK4cDjcAP+/vTuPj6usFz/+eWaStOlCN1q6UATKom0pRUqtUgSk0yqLXFAuVdlByuaCv4osKgWuF3ADFCoisgkUECh6L/biFNlcWAqWTXatgIVC9y1tk8zz+2MmY9IkJWmSztLP+/XKK3Oe85xzvjOZpz3nO898D18Ajgd6A78CPplOp9/szGBCCHOBliqJXxBj/E2uzwVAHXBbbt07wA4xxiUhhL2B+0IIo2KMK1vY/6nAqQBnnnkmCxcu7MzwpbKwdOnSQodQcl57uw8Lh64odBgArK+p5d333qGmCMtArKpfxcK1pfnvruOida+9tQ27DKxj5SpYuHBtocNptw0bNhTt+cCiuIi1cSULlxdnfODYkFriuFCDuHYtq996i5D0fumOi9LWcB4fFy+GpUtZnlzGotXvE4JFwDrKsaEtpU0JYGAh8A+yid/Hc227pFKpXRo6pNPpP3Q0mBjjpE2tDyGcQLb0xEExZivqxxjXA+tzj58OIbwB7AbMa2H/1wHXAcyYMSMOHTq0oyFLZcmx0T6VlXVF85r1WNqTbQdty8DK4oinsd7LezO0b/HF1VbF8jcuNjsNrafhunbo0L6FDWYzdFtRVbR/29r1K+iR6cbQ6uKMr0Gxvn5SITkuBLBq4EB69u9PomfPQodSFBwXpav38t4M6TOENT17Uj1sGEvDWwwbNKzQYZUNx4a2hLYmgN8FugNfzv1sLAI7d1ZQLQkhfBo4B9g/xri2UftAYGmMsT6EsDPZEhV/78pYJKmxnQcX0yffSTKWgNAWVJGEP/0tw74jLVXQ2SIZawBLUgkL3bsT160DE8AqccmQpJ46qKuDyko+lBhZ6JAktVObEsDpdHrHLo6jLa4GugHp3NcMHo8xngZ8Erg4hFALZIDTYozOoZe0xRRTDdEQk2SiCWBtWavXFTqC8hRjxq9WSlIJC926EdevL3QYUoclQyX1sY5YV0eoqCBmSvf+D9LWqq0zgAsuxrhLK+33APds4XAkKa+Y0jOJIp0BHGMEE1ll6YFnvADoKhlnAEtSScvPAJZKXEWopC7WEmtrobIS1nteL5UaryokqawU5wzgSCZ/92CVl+36wsmTk0U1E75cZMeNNw6SpFIVqquJNTWFDkPqsIpQRV3cALkZwJ7XS6WnZGYAS1Kx2jjxlbtHZf6r2zFG6jNQkQzN1jWsb+/XvBv2s/G+QkxSX4QzgLMzGT1RLEff+nwFIQTeXlzf4vtbmy8TM1Qk/KxekkqVM4BVLipDFbVxPZV1dVBRQfSjf6nkmACWpA4KwIa6SFVFNun1jevrChdL/8DHdyu+BHAkOpOxTDUkexMBnnglcudj9Vzx5coCR1UesjOATQBLUqkyAaxykZ0BXEslftAvlSoTwJLUQX9/N/LAM3Vc8eVKbn84m/w953MVJHN5m/dWRNasg4VLI4P7BRIBqqvgb29lWLwCdhocGNQnkEjAdn0D62tzn6lHeHtx5OW3s8tVFdCjG1RWBHp1h216wKLlUFef3V9FEobu3I0MhUtAt8abWZW/ZBK65fK+Z/+iNt/evxcsXZ1dN3anQLeqwND+2ffCgG1g5Zrs738tifSuzrYPGxDoVQ21dbBoeaQiCTFCv16BRcsi2w8M1Kz/d1npygpYvjo7Dvr0zN6ULgDJBFTlYkoEWF+b7ZsIsLoGQpHnVp05L0klrls34rJlhY5C6rDKhhIQDd/28vxEKjkmgCWpgz46IsFrC+upz0Seei3y1c8mGdL/3ydFg/q2fII0ZqfWsk//7r/LUDhgTNtj+ef6JOsyxXe3aWsAl7+KRDbB+tERgWfe+PfXApeuzv5eXwtPvBppXjSlsHbdt9ARtC77wYkz5yWpVIVEgvq33ip0GFKHVeRKQBACmVjvxA6pBJkAlqQOmvDhBPNezzD9l9mZtzttV7hphQmSZIqyBnAkYQmIspZMwJ2P1XPy5CTHfqrjY6A+E0km/l1HuyFt3FD+uuF3CNkZvSEEMrnGuvrsjPhANt0cIyQT2fWJRv3+8lKGJ/49WbnoZGcAF/k0ZUlS60Kg/t13Cx2F1GGVoRsbMtlyJuviWt7dsKCwAUlqN68qJKkTnHFINrk5+kOF/TQ8EZJkYvElgGOsdwZwmUsmAx//cIKPDO+cv3ND8heyyd1E7ieZyP5UJLM/yURoVIc426eqIvs7NNqmYX3jfr2rA3XFN1zyMtYAlqSSlth2Wyo+9KFChyF1WFXozn3LfgrAmvoV7Ny9HV9RlFQUvKqQpE6QCIEfn1LByZML+8WKYp0BHIkkir3gqjokmYDautgkcVvsulVR1AngGOsdN5JUykJg/TPPFDoKqcMqQxVL6t4BYNaSy3il5qkCRySpvbyqkKROUgy1sBIhSX0xzgAmOpOxzCUTUJ8pdBTt060C6oo45ki0BIQklbBE375UbL99ocOQOqwqVOcf18UNVISqAkYjaXNYA1iSykiySGcAZ7AExNbgH4uK6wZvH6RbZaC+vnhjtgSEJJW20L07sbaIi81LbVSd6JV/PLbHAYzuMbGA0UjaHF5VSFIZyc4AruNbb06hJrOm0OHkZWI9ieBN4MrZbx6vZ3nxvOXapLY+smZdoaNoXYwZgiUgJKlkhRDYMG9eocOQOqwydMs+iJFESNI3OaiwAUlqN68qJKmMdAvV1MZsRuvhlXcUOJp/2xDXURW6FzoMdaGLj6nkii9XFjqMdtmub2CvEcV7KpQhYwkISSpxVfvsU+gQpA4LITBpm2MA+OuahywBIZUgryokqYxUJar506rfAvDwyrvy7TFu/tfcO7Jtg9q4/t8zB6Qi0a0yMKhP8ZYmyZZO8VRNkkpaJ5xHacuKMXbK+W+5iURigFHVn/AmtVIJsgawJJWRCiqbzBj81ptTChhNU0cP+GahQ5CaiRTvBV6MGS+wJEnaglb/6lcsv+ACAIa98Qb/GjGCIc8+yzt77sl2jzxC5U47AVC/ZAnJAQMKGeoW1y1RzYZkXaHDkLSZvKqQpDISQuC9ujc5f+htjOnxyVb7bVsxLP94525jmNj7CMb2OJBduu/FgIoh+XW9E/3zj/fqcRCQTTI32LHbKA7vd2aLx9ijx35NlvfscWD7noy0BRTzzQkjkQTWzpakUrbqqqsKHYJasXDsWDa8+GJ+OdbV5ZO/AP8aMQKAd/bcE4BF++/P2zvswNs77MA7e+1FzQMPZLerrd0qZgz3SGzDum4mgKVS5QxgSSpDvZP9+dK2F/AlLvjgzu0wlXNabP9E78926nEkZWsAF3OCWpL0wbrtuy+xtpZQWVp18rcGmaVLee8zn2HI/Pkk+/dnxX//d7M+Q55+miWnnkq/Sy9lw/PPs+z//b/8uiVf/nKr++773/9Nz89/nrW/+x21L7/M+scfZ9tf/IJEnz6E7t2JdXWQTLL+0Ufp9vGPQyJBqKggxkgIxfl//zuxYqbVAAAgAElEQVQb/s7dBz/KQXyx0KFI2gwmgCWpDPm1caltIrFoL7YysZ7gWJakkla1zz5kli0jOWhQoUPRRipHjaL2xRd5d8IEek2bxurrr2fI008Ta2pIDh8OZL9dN2j27Gz/D3+YnkcdBUCmpoaFu+/e6r6Xn38+y88/v0nbO5txQ8ABN9zAyh//mEH33Ueo6pwbr8UYqXvlFSp23524YgWhT582nQcNrcrOiH5w5e1M7nt8p8QiacsxASxJZebyHR4odAhSyUiEJBkyJIuw1EIk06SmtySp9FTutlu2XqwJ4KKy/plnqH3xRXqffjqrfvazfKmO5MCBbdo+UV3N9m++2er6WF9PZuVK6t98k4qddyZ060bN/fezdPp0qK2leypFYpttWP/kkyT696f22Wdb3M+Sk04C4F+77NLi+m3OPZeVl13WppjbY9D//A9VudIXDcb1msyvl/6I7at26/TjSep6JoAlSdJWK0kFmVhHMhRfAjhDxhrAklTqQmDDX/9K1Uc+UuhI1EjdK68A0Oe889jm7LN5Z7/9yCxa1Gn7D8kkyX79SPbrl2/rccQR9DjiiDbvI8ZIXLOG+nfeYfUNN7Dmttua9Wmc/K0aN44N8+a1ad/9r7mGpWe2fB8PgPcOO6zFBPcRf9mTCUd/v03HkFRcTABLkqStVjIkqaeOSroVOpRmMrHeci6SVOIqR46k5n/+p9BhaCOhe3e2mzs3/3jIE08Qa2oKHFVTIQRCr14kdt2VfpdeSr9LL23X9rGuLl9XmA0bCN2anuv0OOywVrdtuNndkCefJDFwICGZ/UD6I/8a3P4nIqkoeFUhSZK2avWxvtAhtKg+1pHEmwZJUknLZFj5wx8WOgptJLNiBYn+/fPLIZEg0bNnASPqfKEiO98vhNAs+ftBts3NNn5n/Hjq33nn3ysymU6LT9KWZQJYkiRttTJkeL/urUKH0apivDmdJKntKnbcsdAhqAVrbr+dRJ8+hQ6jaHXfbz9Cr14AZBYvBrJ1jRtmAksqPZaAkCRJW62BFdtz39KfsiGuZ/qQ63ll3TxW1S9lr54HUR9r6Z7IzgZaW7+SOmrpkehNggoSIUFd3ABARWj5rtwxRiKRDPUEAsngaZckbW1MmBWn7lOmECr9ls2mDH3xRTY88wyZ5csBiGvXUvvyywWOStLm8kpEkiRttQZUDOWd2n8AcN5bB+fb71l6ZaFCaiLV99hChyBJ6qCKXXYpdAjamN+w+UANpSNW/fzndD/gAOKGDXT7+McLHZakzWQJCEmStNUaWDm8zX2nDfoBvRP92bnbGLZJDuCM7a4AoF9yO6YPuZ7tq3bL9+2dyNYV3KX7Xgyu3JH9eh+ZX7djt1FM6nMsQyt34SPdP8bQyhFM7H0kPRLb0C+5HZO2OYYvD7oMSVJ5qD7kkEKHIG2Wyt13J/PeewDEdesI3bsXOCJJm8sZwJIkaauVDEnOG/or+lYMalP/b28/q8ny5Ts8kH/8lcE/3eS2h/ab1mQ51eeYJsuHbbS+IcEsSZI6V92CBYUOoSSEykq6ffKTAMT169t9MzlJxcMZwJIkaavW1uTvlvahbiMLHYIkqROsuuoqMitXFjoM5cR166i5775Ch1E66uoAZwBLpc4EsCRJkiRJXaRi992pX7Kk0GEop+7tt+l9xhmFDqNk1L35JgCxpoZQXV3gaCRtLhPAkiRJkiR1kT7TpxPXrCl0GMrJrFpF1fjxhQ6jZFTsvDMAcfVqQu/eBY5G0uYyASxJkiRJUhcJPXuaAC4icfVqEj17FjqMklP3j39YAkIqYSaAJUmSJEnqIvX/+herrr220GEoJ65dSzAB3G71S5aQHDCg0GFI2kwmgCVJkiRJ6iLJoUNZ9+CDhQ5DOXH9ekK3boUOo+QkttmG0KNHocOQtJlMAEuSJEmS1EW67bsv23zjG4UOQzlx/XpCVVWhwygdMWZ/mTiXSpoJYEmSJEmSukhIJPJJNBVe3LDBRGZ7hABkXzdMnEslywSwJEmSJEldKJoALh4mMjdLzf/+LyGXDJZUekwAS5IkSZLUlUwAF424YYMlIDZDcujQQocgqQNMAEuSJEmS1JWcOVk0TABvnqqPfrTQIUjqABPAkiRJkiR1JWcAF41YWwuVlYUOQ5K2KBPAkiRJkiR1oVVXXVXoENQgRmvZStrqmACWJEmSJKmLeSO4ImHyV9JWyASwJEmSJEldqM+FF5JZvrzQYUiStlImgCVJkiRJ6kLJAQPILF1a6DCkzbbqyisLHYKkDjABLEmSJElSF0r0709myZJChyHwhnztFJJJMqtXU7HLLoUORVIHmACWJEmSJKkLJbfbjvp33y10GFK7haoq6t9/n14nnVToUCR1gAlgSZIkSZK6UKJ/f0tAqDRVVZFZtoxEr16FjkRSB5RUAjiEMCOE8K8Qwvzcz8GN1p0XQng9hPBKCGFKIeOUJEmSJKlBok8f1j38cKHDEEAIhY6gpIRcAjj06FHoUCR1QEWhA9gMV8QYf9i4IYQwEpgKjAKGAnNDCLvFGOsLEaAkSZIkSQ1CVRWxtrbQYQisAdxOoXt3MsuWkRw8uNChSOqAkpoBvAmHA3fEGNfHGP8BvA6ML3BMkiRJkiQBUDFiRKFDEICJ+HYJVVVkVq4kdO9e6FAkdUApJoDPCiE8F0K4IYTQL9c2DHirUZ+3c22SJEmSJBVc5v33Cx2CgNqXXip0CCUldOtGZvlyQnV1oUOR1AFFVwIihDAXaOm7BRcAPwMuAWLu94+ANt+KMoRwKnAqwJlnnsnChQs7HK9UbpZ6cwqpGceF1DLHhtSc40KtyTzyyFZ7DVos4yLW1cGuu261f4fNEdeuJT76KKvHjiX06/fBG6hdimVsqPwVXQI4xjipLf1CCL8A/je3+C9geKPV2+faNt73dcB1ADNmzIhDhw7tWLBSmXJsSM05LqSWOTak5hwXasn7e+/NtgMHEiorCx1KQRTDuMisWMGawYPpXQSxlIr1w4axAhgwcqR1gLtIMYwNlb+SKgERQhjSaPEI4IXc498CU0MI3UIIOwG7Ak9u6fgkSZIkSWpJ1ZgxbHjuuUKHsVWpW7CA1TffnF/OrF1L6NGjgBGVnlBdDRUVhN69Cx2KpA4oqQQw8P0QwvMhhOeAA4GzAWKMLwJ3AX8D/g84M8ZYX7gwJUmSJEn6t6qPfpR16XS7t8usXt0F0ZSmGGO7+i87/3yWf+c7+e3i6tUkevXqitDKVujZk8ySJd4ETipxRVcCYlNijMduYt33gO9twXAkSZIkSWqT7vvuy5ITT2TVzJlsc/bZdJ8yhQ1PPUXFzjuTHDKEuHo1q375S2p+85t277v6P/6Dmvvuo/unPpX/mn71IYcQN2ygYtgwKkaMoP6dd7LrQiCzfDnr5s6lfvFikttuS8VOO5FZvZrksGHEVatY98c/kujRg5U/+Qk9PvtZ1tx+e4ef/9sd3sPmW3vnnfScOpXM6tWEnj0LGEnpSfTsSWblSkIyWehQJHVASSWAJUmSJEkqRY1nUK684gpWXnFFq30H/c//kBg4kETfvtS/8w6LDjxwk/uuue8+ANb94Q/5ts5I2nbmfgpl0O9+x3sHH8yyc86h91lnkRw4sNAhlZTQsydxzZpChyGpg0wAS5IkSZK0BQz7xz9Y9+CDVOy4Y/b3iBFUT55MrK9vdYZlYsQItn/zzQ4fu+EY9cuWkezXb7O23VwLFy4sjhtdxUj3D0imq6nQsydx7dpChyGpg0wAS5IkSZK0BYRkkurJkwGo3G23Ju1b4thAu5O/jbctVcP++U/W/vrXLJs+nd5f+UqhwykpIVFqt46S1BJHsiRJkiRJKlshBHocdRQAiR49ChxN6en3ox8VOgRJHWQCWJIkSZIklbUQAkOefLLQYZSknrnkuaTSZQJYkiRJkiSVveTgwYUOQZIKwgSwJEmSJEmSJJUpE8CSJEmSJEmSVKZMAEuSJEmSJElSmTIBLEmSJEmSJEllygSwJEmSJEmSJJUpE8CSJEmSJEmSVKZMAEuSJEmSJElSmTIBLEmSJEmSJEllygSwJEmSJEmSJJUpE8CSJEmSJEmSVKZMAEuSJEmSJElSmTIBLEmSJEmSJEllygSwJEmSJEmSJJUpE8CSJEmSJEmSVKYqCh2AJEmSJEmS1FiMkRhjocPoUjFGMplMocNQiQkhEEJo1zYmgCVJkiRJklQ0amtrAUgmkwWOpGsNGDCg0CGoBNXV1QFQWVnZ5m1MAEuSJEmSJKkoNMz6bU9yq1QlEgkSCauzqn0SiQS1tbXEGNs8E9h3mSRJkiRJkopCjLHsZ/5KHZVIJNpVIsUEsCRJkiRJkiSViPbWADYBLEmSJEmSJDUSQuCYY47JL9fV1TFw4EAOPfTQTj/Wtddeyy233ALATTfdxMKFC9u9jx133JHFixd3dmgqE9YAliRJkiRJkhrp2bMnL7zwAjU1NVRXV5NOpxk2bFiXHOu0007LP77pppsYPXo0Q4cO7ZJjaevkDGBJkiRJkiRpIwcffDD3338/ALNmzeILX/hCft2TTz7Jxz/+cfbaay8+8YlP8MorrwCwdu1a/vM//5ORI0dyxBFH8LGPfYx58+YB0KtXLy644AL23HNPJkyYwKJFiwCYMWMGP/zhD7n77ruZN28eX/rSlxg7diw1NTVNZvbOmzePAw44AIAlS5YwefJkRo0axSmnnNKkHuytt97K+PHjGTt2LNOmTaO+vr7LXysVN2cAS5IkSZIkqSg9/vjjrF27tlP32aNHDyZMmPCB/aZOncrFF1/MoYceynPPPcdJJ53EY489BsCHP/xhHnvsMSoqKpg7dy7nn38+99xzDzNnzqRfv3787W9/44UXXmDs2LH5/a1Zs4YJEybwve99j3POOYcbbriBCy+8ML/+85//PFdffTU//OEPGTdu3CZju+iii5g4cSLf/e53uf/++/nlL38JwEsvvcSdd97Jn/70JyorKznjjDO47bbbOO644zbnpVKZMAEsSZIkSZIkbWTMmDEsWLCAWbNmcfDBBzdZt2LFCo4//nhee+01QgjU1tYC8Mc//pGvfe1rAIwePZoxY8bkt6mqqsrXEN5777154IEHNju2Rx99lHvvvReAQw45hH79+gHw4IMP8vTTT7PPPvsAUFNTw6BBgzb7OCoPJoAlSZIkSZJUlNoyU7crffazn2X69Ok8/PDDLFmyJN/+ne98hwMPPJDZs2ezYMGCfGmGTamsrCSEAEAymaSuru4Dt6moqCCTyQCwbt26D+wfY+T444/n0ksv/cC+2npYA1iSJEmSJElqwUknncSFF17IHnvs0aR9xYoV+ZvC3XTTTfn2fffdl7vuuguAv/3tbzz//PPtOl7v3r1ZtWpVfnnHHXfk6aefBuCee+7Jt3/yk5/k9ttvB2DOnDksW7YMgIMOOoi7776b9957D4ClS5fyz3/+s10xqPyYAJYkSZIkSZJasP322/PVr361Wfs555zDeeedx1577dVkJu8ZZ5zB+++/z8iRI/n2t7/NqFGj6NOnT5uPd8IJJ3DaaaflbwJ34YUX8rWvfY1x48aRTCbz/S688EIeffRRRo0axb333ssOO+wAwMiRI/mv//ovJk+ezJgxY0ilUrzzzjsdeAVUDkLjuwRuTWbMmBFnzJhR6DCkorNw4UKGDh1a6DCkouK4kFrm2JCac1xIzTku1B4N5Q4SidKcs1hfX09tbS3du3fnjTfeYNKkSbzyyitUVVU167thw4YW26UP0to4mTZt2tM///nPm91B0BrAkiRJkiRJUidYu3YtBx54ILW1tcQYmTlzpkleFZwJYEmSJEmSJKkT9O7dm3nz5hU6DKmJ0pxPL0mSJEmSJEn6QCaAJUmSJEmSJKlMmQCWJEmSJEmSpDJlAliSJEmSJEmSypQJYEmSJEmSJClnyZIljB07lrFjxzJ48GCGDRuWX96wYUOnHefBBx8khMBNN92Ub5s3bx4hBK688spOO06DE088kVdeeYVMJsNll13W7u1ff/11xo4d265t1qxZwwEHHEAmk+H1118nhMDPfvaz/PrTTjuNW2+9FYAYIxdddBG77LILu+22GwcddBAvvfRSk/01vD5z585tdqy7776bEAKvv/56u59bS2644Qbefffd/HLD69dRf//737njjjs+sN+7777LwQcf3OHjgQlgSZIkSZIkKW/AgAHMnz+f+fPnc9ppp3H22Wfnl6uqqoBssjKTyXT4WHvssQd33nlnfnnWrFnsueeeHd5vS2688UZ23333zU4Ab47rr7+eo446ikQim4LcbrvtuOKKK6irq2vW96qrruKpp57i+eef59VXX2X69OkcdthhrF+/Pt9n1qxZTJw4kVmzZjXbflPrNsfGCeCG16+j2poAHjx4MAMGDOCJJ57o8DFNAEuSJEmSJEkf4PXXX2fkyJF86UtfYtSoUbz11lv07ds3v/6OO+7glFNOAWDRokUceeSRjBs3jvHjx/P444+3uM+dd96ZlStXsnjxYjKZDOl0milTpuTXX3vtteyzzz7sueeeHHXUUdTU1ADw2muv8bGPfYw99tiDCy64IB/H3LlzOeiggzjyyCPZfffdOe644/L7mjhxIvPnz+fcc89l1apVjB07luOOO67ZzN7LLruM//qv/wLgqaeeYsyYMYwdO5Zrr70236euro5vfOMbjB8/njFjxnD99de3+Pxuu+02Dj/88Pzy4MGD2W+//fjVr37VrO/ll1/ONddcQ3V1NQCf+cxn2GefffLJ0kwmwz333MPNN9/MnDlzmszGXrlyJU888QS/+MUvNplcvfnmmxk/fjxjx47ljDPOIJPJUFdXx7HHHssee+zB6NGj+clPfsKdd97J/PnzOfroo/Mzvxtev7q6Ovr27cs3vvENRo0axZQpU3jiiSfYf//92Xnnnfnd734HwBtvvMF+++3HXnvtxd57751P5J577rk89NBDjB07lp/85CebfC3/4z/+g9tuu63V59NWFR3egyRJkiRJktRF/vCHP7SpX/fu3fnEJz4BwMKFC3n55ZcZM2YM2267LQAPPfQQMUY+9alPbXYsL7/8Mrfccgvjxo1rcRZrg69+9aucc845TJgwgQULFnDooYfywgsvtNj3c5/7HHfffTcf+chH+NjHPkZlZWV+3VFHHcVpp50GZBOHN910E6effjpf+cpXmD59OkcddRRXX311k/0988wzvPjii2y33XZMmDCBxx9/nAkTJuTXX3bZZVx//fXMnz8fYJMlE0444QSuu+469t13X84+++x8+3XXXcegQYN48sknWb9+PRMmTGDy5MnssMMO+T7r1q3j7bffZvvtt2+yz3PPPZfDDz+c448/Pt+2dOlS6urq+NCHPtSk77hx43jxxRcBeOyxx9h9993ZeeedmThxInPmzMknl2fPns0hhxzChz/8YXr27Mmzzz7bbCb1Cy+8wOzZs/nzn/9MRUUFp556KnfccQcjRoxg8eLFPP/88wAsX76cvn378tOf/pSrr766xbIXK1as4DOf+Qw//vGPOeyww5gxYwYPPvggzz77LNOmTePggw9myJAhpNNpunfvzssvv8zxxx/PE088wWWXXcbVV1/NfffdB8DMmTNbfS3HjRuXT8Z3hAlgSZIkSZIkqQ1GjBjBuHHjPrDf3Llzm9SLXbZsGTU1NfnZrY0dffTRHHvssey222584QtfaJLwfu655/jud7/L8uXLWbVqFYceeigATzzxRH6m6Re/+EW+/e1v57eZMGECQ4cOBWDs2LEsWLCgSQK4rRYvXkxNTQ377rsvAMceeywPPfQQAL///e956aWX8rNtV6xYwWuvvdYkAfzee+/Rv3//ZvvdddddGTt2bJPSF20xa9Yspk6dCsDUqVOZNWtWPgE8a9YsvvWtbzVZt3ECeO7cuTz11FP5v19NTQ3Dhw9nypQpvPLKK3z1q1/lkEMOYfLkyR8YS3V1NalUCsiW8ejTpw8VFRXsscceLFiwAID169dz1lln8eyzz1JRUcEbb7zR4r429VoOGjSIhQsXtut1aokJYEmSJEmSJBWtzZmxO3To0HwStMGBBx7Y4Vh69uyZf5xIJIgx5pfXrVuXfxxj5Mknn8zXDN6UYcOGEWPkkUceYebMmU0SwMcddxxz5sxh9OjRXH/99a2WkmisW7du+cfJZHKTM5UBKioqmtQzXrduHRUVm04ZxhiZOXMmBx10UKt9qqurm7wmjV1wwQV88YtfzCem+/fvT0VFBW+++WaTJPLTTz/NlClTqK2t5d577+X+++/noosuIpPJsHz5ctasWcPatWt55JFHeOmllwghUFdXR2VlJZdeeikhhCYxn3TSSVxyySXN4nnuueeYM2cO11xzDffccw/XXXfdJp9/479rIpHIv+aJRCL/ev/oRz9i+PDh3HrrrdTW1tKrV68W97Wp13LdunUtfmjQXiVTAziEcGcIYX7uZ0EIYX6ufccQQk2jddd+0L4kSZIkSZKkjkgkEvTr14/XXnuNTCbD7Nmz8+smTZrENddck19uKLfQmksuuYTLL788f7O0BmvWrGHw4MHU1tZy++2359vHjx+fP15bbijWWENytyFROXjwYBYuXMiyZctYt24d999/PwDbbrst1dXV/OUvfwFoUot2ypQpzJw5M7+PV155JV+fuMHAgQOpqalpUqu3wahRoxgxYgRz5szJt33zm9/kK1/5Sj5p/MADD/DEE09w9NFHk06n2WeffXjrrbdYsGABb775Jocddhi/+c1v+PWvf81JJ53EP//5TxYsWMDbb7/N0KFD83E3mDRpEnfddReLFy8GYMmSJbz55pu8//77xBg56qijuPjii3nmmWcA6N27N6tWrWrXa9vYihUrGDJkCCEEbr755vyHBRvvd1Ov5auvvsro0aM3O4YGJTMDOMZ4dMPjEMKPgBWNVr8RY2xekEOSJEmSJEnqIpdffjlTpkxh0KBB7L333qxfvx6Aa665htNPP50bb7yRuro6DjzwwCYJ4Y1NnDixxfaLL76YffbZh4EDBzJ+/Ph8cvQnP/kJxx57LBdddBFTpkyhT58+7Yr75JNPZsyYMYwbN45bbrmF888/n3HjxjFs2DBGjhyZ73fjjTdyyimnkEgk8iUPAKZNm8abb76Zr487aNAgfvOb3zQ7zqRJk/jzn//MAQcc0Gzdt7/9bfbee+/88te//nVWrFjB6NGjSSQSDBs2jN/+9rd0796dWbNmccQRRzTZ/nOf+xw33ngjy5cv58ILL2y2btasWfma0JAt1XDhhRcyadIkMpkMlZWVXHvttSSTSU4++WRijIQQuPzyywE48cQTOeWUU6iurubJJ59sx6ubddZZZ/H5z3+eG264gUMOOSQ/S3ivvfaivr6ePffck5NPPpkzzzyz1dfyoYce4pBDDmn3sTcWGk9VLwUhO3f7TeBTMcbXQgg7Av8bY2xXOnzGjBlxxowZnR+gVOIWLlzY7Gsy0tbOcSG1zLEhNee4kJpzXKg9GkoRbDwTthxt2LChTSUiWrJmzRp69OhBCIFbb72V2bNnc88993RyhB331FNPMXPmTG688cZCh1JyYozst99+3H///c0S/K2Nk2nTpj3985//vFmR6pKZAdzIfsCiGONrjdp2CiH8FVgJfDvG+FhLG4YQTgVOBTjzzDM7pYiyVG6WLl1a6BCkouO4kFrm2JCac1xIzTku1B4xRgYMGLBVJIDr6+tbLI/QFn/+85+ZPn06mUyGfv36cd111232vrrSnnvuyYQJE1i3bt1W8TftTIsWLeLss8+murq62d82k8mwZMmSJjWON6WoEsAhhLnA4BZWXRBjbJhH/gVgVqN17wA7xBiXhBD2Bu4LIYyKMa7ceCcxxuuA6yA7A9hPIKWWOTak5hwXUsscG1JzjgupOceF2soZwG2TSqV49tlnOzmirjFt2rRCh1CShg8fzvDhw1tcl8lkGDJkSJvHSVElgGOMkza1PoRQARwJ5AuExBjXA+tzj58OIbwB7AbM68JQJUmSJEmSJKnoldrHKZOAl2OMbzc0hBAGhhCSucc7A7sCfy9QfJIkSZIkSZJUNIpqBnAbTKVp+QeATwIXhxBqgQxwWozRAkOSJEmSJEmStnollQCOMZ7QQts9QPHd5lCSJEmSJEmSCqzUSkBIkiRJkiRJXeatt95ip512YunS7BfMly1bxk477cSCBQua9a2pqWH//fenvr6eBQsWcMABBwBw0003cdZZZzXpe8ABBzBv3qZvWXXCCSfw8MMPAzB16lRee+21Dj8fyQSwJEmSJEmSlDN8+HBOP/10zj33XADOPfdcTj31VHbcccdmfW+44QaOPPJIkslkp8dx+umn8/3vf7/T96utjwlgSZIkSZIkqZGzzz6bxx9/nCuvvJI//vGPTJ8+vcV+t912G4cffjgAyWSS/v37t2n/vXr1Yvr06YwaNYqDDjqI999/H4A+ffpQVVUFwH777cfcuXOpq6vrhGekrZkJYEmSJEmSJKmRyspKfvCDH3D22Wdz5ZVXUllZ2azPhg0b+Pvf/56fGTx8+HDuvffeNu1/zZo17L333rz44ovsv//+XHTRRQBcddVVfOITnwAgkUiwyy678Oyzz3bOk9JWq6RuAidJkiRJkqSty5pf/5q6t97qtP1VDB9Oz6OO+sB+c+bMYciQIbzwwgukUqlm6xcvXkzfvn1b3DaEsMn2RCLBUbkYjjnmGI488sgW+w8aNIiFCxey9957f2C8UmtMAEuSJEmSJKlotSVZ29nmz59POp3m8ccfZ+LEiUydOpUhQ4Y06VNdXc26deta3H7AgAEsW7asSdvSpUvZdtttW+zfWsJ43bp1VFdXb8YzkP7NEhCSJEmSJElSToyR008/nSuvvJIddtiBb37zmy3WAO7Xrx/19fUtJoH32Wcf/sLhzi4AABFBSURBVPSnP/Huu+8CMG/ePNavX8/w4cMByGQy+XIRt99+OxMnTmwxlldffZXRo0d31lPTVsoEsCRJkiRJkpTzi1/8gh122CFf9uGMM87gpZde4pFHHmnWd/Lkyfzxj39s1r7ddttx1VVXcfDBBzN27Fi+/vWvM2vWLBKJbCquZ8+ePPXUU4wePZo//OEPfPe73222j0WLFlFdXc3gwYM7+Rlqa2MJCEmSJEmSJCnn1FNP5dRTT80vJ5NJnnnmmRb7nnnmmVxxxRVMmjSp2brDDz+cww8/vNXj/OAHP6CqqqrV9bfffjvTpk1rR+RSy5wBLEmSJEmSJG2Gj370oxx44IHU19d3+r779u3L8ccf3+n71dbHGcCSJEmSJEnSZjrppJPavc3q1avZsGHDJvuceOKJmxuS1IQzgCVJkiRJkiSpTJkAliRJkiRJkqQyZQJYkiRJkiRJksqUCWBJkiRJkiRJKlMmgCVJkiRJkqScGCMTJ05kzpw5+bZf//rXfPrTny5gVNLmqyh0AJIkSZIkSVKxCCFw7bXXctRRR3HggQdSV1fH+eefz//93/8VOjRps5gAliRJkiRJkhoZPXo0hx12GJdffjlr1qzhuOOOY8SIEYUOS9osJoAlSZIkSZKkjVx44YV89KMfpaqqinnz5hU6HGmzmQCWJEmSJElS0Xry1QxLV8VO21//3oHxu33wbbF69uzJ0UcfTa9evejWrVunHV/a0kwAS5IkSZIkqWi1JVnbVRKJBIlE4Y4vdQbfwZIkSZIkSZJUpkwAS5IkSZIkSVKZsgSEJEmSJEmS1IIZM2YUOgSpw5wBLEmSJEmSJEllygSwJEmSJEmSJJUpE8CSJEmSJEmSVKZMAEuSJEmSJElSmTIBLEmSJEmSJEllygSwJEmSJEmSJJUpE8CSJEmSJElSzuzZsxk7dmyTn0QiwZw5cwodmrRZKgodgCRJkiRJklQsjjjiCI444oj88nXXXcdtt93GlClTChiVtPlMAEuSJEmSJEktePXVV7n44ov585//TCLhF+lVmnznSpIkSZIkSRupra3li1/8Ij/60Y/YYYcdCh2OtNmcASxJkiRJkqSiNW/171lWt6jT9tevYjvG9Zr8gf2+853vMGrUKI4++uhOO7ZUCCaAJUmSJEmSVLTakqztbA8//DD33HMPzzzzzBY/ttTZTABLkiRJkiRJOcuWLePEE0/k9ttvp3fv3oUOR+owE8CSJEmSJElSzrXXXst7773H6aef3qT9vPPOsxyESpIJYEmSJEmSJCnnvPPO47zzzit0GFKnSRQ6AEmSJEmSJElS1zABLEmSJEmSJEllygSwJEmSJEmSJJWIGGO7+psAliRJkiRJUlEIIVBfX1/oMKSilslkCCG0ub83gZMkSZIkSVJRaEhq1dbWkkgk2pXkKjWZTIZMJlPoMFRCYoz590x7xoYzgCVJkiRJklQ0KisrqaioKOvkL8CSJUsKHYJKTAiBiooKKisr27Vd0c0ADiEcBcwAPgKMjzHOa7TuPOBkoB74aozxgVz7p4GrgCRwfYzxsi0dtyRJkiRJkjpHCKHsE8AhBBIJ52aq6xXju+wF4Ejg0caNIYSRwFRgFPBpYGYIIRlCSALXAJ8BRgJfyPWVJEmSJEmSpK1a0c0AjjG+BC3WsTgcuCPGuB74RwjhdWB8bt3rMca/57a7I9f3b1smYkmSJEmSJEkqTsU4A7g1w4C3Gi2/nWtrrV2SJEmSJEmStmoFmQEcQpgLDG5h1QUxxt904XFPBU4FOOGEE9ZPmzbtha46llSq1q5du22PHj0WFzoOqZg4LqSWOTak5hwXUnOOC6lljg11gQ+11FiQBHCMcdJmbPYvYHij5e1zbWyifePjXgdcBxBCmBdjHLcZcUhlzbEhNee4kFrm2JCac1xIzTkupJY5NrSllFIJiN8CU0MI3UIIOwG7Ak8CTwG7hhB2CiFUkb1R3G8LGKckSZIkSZIkFYWiuwlcCOEI4KfAQOD+EML8GOOUGOOLIYS7yN7crQ44M8ZYn9vmLOABIAncEGN8sUDhS5IkSZIkSVLRKLoEcIxxNjC7lXXfA77XQvvvgN+181DXtT86aavg2JCac1xILXNsSM05LqTmHBdSyxwb2iJCjLHQMUiSJEmSJEmSukAp1QCWJEmSJEmSJLVD2SSAQwifDiG8EkJ4PYRwbq5tpxDCE7m2O3M3iWtp2/NyfV4JIUzZ1D6lUtLKuPhlCOHZEMJzIYS7Qwi9WtguFUJ4OoTwfO73pxqt2zvX/noI4SchhLAln5PUGVoZGyGE8L0QwqshhJdCCF/dxPbbhBDeDiFc3ajNsaGSFkK4IYTwXgjhhUZt/UMI6RDCa7nf/VrZ9vhcn9dCCMc3andcqKS1Mi4uyZ1HzQ8h/D6EMLSF7caGEP4SQngx1/foRuvadI0iFauWxkWu/SshhJdz7/vvb2L7ZAjhryGE/23U5rhQSQshDA8hPBRC+FtuDHwt1+65lIpCWSSAQwhJ4BrgM8BI4AshhJHA5cAVMcZdgGXAyS1sOxKYCowCPg3MzP2H1No+pZKwiffw2THGPWOMY4A3gbNa2HwxcFiMcQ/geOBXjdb9DPgysGvu59Nd9yykzreJsXECMBz4cIzxI8Adm9jNJcCjG7U5NlTqbqL5+/Zc4MEY467Ag7nlJkII/YELgY8B44ELG13cOC5U6m6i+fv2BzHGMTHGscD/At9tYbu1wHExxoZrjCtDCH1z6z7wGkUqcjex0bgIIRwIHA7smXvf/3AT238NeGmjNseFSl0d8P9ijCOBCcCZuWsMz6VUFMoiAUx2gLweY/x7jHED2Yv2w4FPAXfn+twM/EcL2x4O3BFjXB9j/Afwem5/re1TKhUtvodjjCshO9sRqAaaFQKPMf41xrgwt/giUB1C6BZCGAJsE2N8PGYLiN9Cy+NKKmat/ft+OnBxjDEDEGN8r6WNQwh7A9sBv2/U5thQyYsxPgos3aj5cLLnUND6udQUIB1jXBpjXAakgU87LlQOWhoXDedSOT1p+Vzq1Rjja7nHC4H3gIG586+2XKNIRauV/y9OBy6LMa7P9WntPGp74BDg+kZtjguVvBjjOzHGZ3KPV5H9kGMYnkupSJRLAngY8Faj5bdzbctjjHUbtRFC+GwI4eIP2La1dqlUtPoeDiHcCLwLfBj4aa6t8bho7HPAM7mTuWG5/TTbp1RCWhsbI4CjQwjzQghzQgi7AoQQxoUQrs89TgA/Aqa3sE/HhsrRdjHGd3KP3yX74UeTccGmz6UcFypLIVsy6C3gS+RmAG80Lhr3HQ9UAW8AA2jlGkUqcbsB++XKODwSQtgHIIQwNITwu0b9rgTOATKN2hwXKishhB2BvYAn8FxKRaJcEsDtEmP8bYyxpa9qSVuFGOOJwFCyn0oenWtrNi5CCKPIfh1r2hYPUtryugHrYozjgF8ANwDEGOfFGE/J9TkD+F2M8e1W9iGVrdzMk5h73HhcSFudGOMFMcbhwG3kymm1NC5ys7d+BZzY8A0TqUxVAP3JfvX9m8BdIYQQY1wYYzwYIIRwKPBejPHpAsYpdamQvcfOPcDXN/rGiOdSKqhySQD/i2zdxgbb59r6hhAqNmpr67attUulYpPv4RhjPdmvvn+upY1zX8+aTbZ+3RuN9rl9a/uUSkRrY+Nt4N5c22xgTAvbfhw4K4SwgGxtu+NCCJfh2FD5WpRLYDUkslr6Su+mzqUcFyp3t9H6udQ2wP3ABTHGx3PNS2jbNYpUat4G7o1ZT5Kd4bvtRn32BT6bO4+6A/hUCOFWHBcqEyGESrLJ39tijA3XFZ5LqSiUSwL4KWDX3J1Dq8je1O23wEPA53N9jgd+08K2vwWm5uqb7kS2qPaTm9inVCpafA+HEHaBfK2tzwIvb7xh7iYl9wPnxhj/1NCe++rKyhDChNz2x9HyuJKKWWv/vt8HHJjrsz/w6sYbxhi/FGPcIca4I9kyELfEGM91bKiM/ZbsORS0fi71ADA5hNAvd8OSycADjguVq4YSQTmH0/K5VBXZDxNviTE21DVtmP3VlmsUqdTkz6NCCLuRLXuyuHGHGON5Mcbtc+dRU4E/xBiPcVyoHOTOdX4JvBRj/HGjVZ5LqSiURQI4VyvoLLKD5iXgrhjji8C3gG+EEF4nW1fol9C01mmu313A34D/A86MMdZvYp9SSWjpPZz7fXMI4XngeWAIcDE0qwF8FrAL8N0Qwvzcz6DcujPI3rThdbK17OZsoackdYpN/Pt+GfC53Pi4FDgFWq/p2ALHhkpaCGEW8Bdg9xDC2yGEk8mOi1QI4TVgUm65ybiIMS4FLiH74cpTZG+m2HBzIMeFSlpr4yKE8EII4TmyF+lfy/Vt/P/FfwKfBE5odC41NreuxWsUqVS0Mi5uAHYOIbxAdnbv8THG2EIN4NY4LlTq9gWOJTuzveHf/YPxXEpFImQ/bJMkSZIkSZIklZuymAEsSZIkSZIkSWrOBLAkSZIkSZIklSkTwJIkSZIkSZJUpkwAS5IkSZIkSVKZMgEsSZIkSZIkSWXKBLAkSZIkSZIklamKQgcgSZIkdYVUKnU+sHM6nT6li49zAPAHYC3w+XQ6/X9debzOkEqlugFLgG7A5el0+tsFDkmSJEldxASwJEmSSlIqlVrdaLEHsB6ozy1PS6fT/70Fw1mYTqe334LH65B0Or0e6JVKpW4qcCiSJEnqYiaAJUmSVJLS6XSvhsepVGoBcEo6nZ5buIgkSZKk4mMCWJIkSWUplUrNAHZJp9PHpFKpHYF/ACcBFwO9gPOAp4FfAjsAt6bT6bMabX8S8E1gMPAkcGo6nf5nG499AvDl3HYnAkuBY4DdgEvIll74ZjqdvjnX/yayJSR2AvYDngU+B5wLHA8sAr6QTqf/2srxvgV8FdgGWAickU6nH0ylUuOBmbnj1gC3pdPpb7TlOUiSJKk8eBM4SZIkbU0+BuwKHA1cCVwATAJGAf+ZSqX2B0ilUocD5wNHAgOBx4BZm3Gs54ABwO3AHcA+wC5kk8FXp1KpXo36/yfwbWBbsuUs/gI8k1u+G/hxQ8dUKjUzlUrNzD3eHTgL2CedTvcGpgALcl2vAq5Kp9PbACOAu9r5HCRJklTinAEsSZKkrckl6XR6HfD7VCq1BpiVTqffA0ilUo8BewGPAKcBl6bT6Zdy6/4bOD+VSn2orbOAgX+k0+kbc9vfSTbZfHGu/u7vU6nUBrLJ4Pm5/rPT6fTTuf6zyc7ivaXR9vnZyel0+oxGx6knO6N4ZCqVej+dTi9otK4W2CWVSm2bTqcXA4+3MXZJkiSVCWcAS5IkaWuyqNHjmhaWG2bkfgi4KpVKLU+lUsvJlnAIwLAOHIt0Ot3a8doTWxPpdPp14OvADOC9VCp1RyqVGppbfTLZ8g8vp1Kpp1Kp1KHtiF+SJEllwBnAkiRJUnNvAd9Lp9O3FTqQtkin07cDt6dSqW2AnwOXA8em0+nXgC+kUqkE2XIWd6dSqQHpdHpNAcOVJEnSFmQCWJIkSWruWuCSVCo1P51Ov5hKpfoAk9Pp9K8LHdjGcjWAhwF/AtaRnS2czK07BnggnU6/n5vJDJApSKCSJEkqCEtASJIkSRtJp9Ozyc6ivSOVSq0EXgA+U9io/i2VSl2bSqWuzS12Ay4DFgPvAoOA83LrPg28mEqlVpO9IdzUdDpds6XjlSRJUuGEGGOhY5AkSZJKViqV+iTwALAeODqdTj9Q4JA+UCqV6ka2xnAl8P10On1RgUOSJElSFzEBLEmSJEmSJEllyhIQkiRJkiRJklSmTABLkiRJkiRJUpkyASxJkiRJkiRJZcoEsCRJkiRJkiSVKRPAkiRJkiRJklSmTABLkiRJkiRJUpkyASxJkiRJkiRJZer/A2jG+xCXiL9VAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABYAAAAH3CAYAAAACOftEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xb9bn48c/3HE3L247tJI6TkEkSCCGEFTZlJ5TelrZ07/aW0gGdtL+W7nG7C9370tve292wKWHPQAghhJAdxyt2vIf2+f7+0JEiy7ItT0nO8+aVF9bR0dFjWTo65znP9/kqrTVCCCGEEEIIIYQQQgghZh4j2wEIIYQQQgghhBBCCCGEmBqSABZCCCGEEEIIIYQQQogZShLAQgghhBBCCCGEEEIIMUNJAlgIIYQQQgghhBBCCCFmKEkACyGEEEIIIYQQQgghxAwlCWAhhBBCCCGEEEIIIYSYoSQBLIQQQgghhABAKfUOpZRWSi1IWvZbpdTBlPUOKqUem+740lFKLbBjfke2YxFCCCGEyEWSABZCCCGEAJRSF9hJpPckLYsnlrRS6sfDPO61Seu8I2n5LfayxcM87iupibZh1ht3DPlEKVVuv2YXZDuWTOVCzEqp/1BK3aWUalVKhZVSbUqpu5VSb1VKmdmKayoopW7Mxfd3ymc0/q9HKfWYUuqN2Y5PCCGEEEISwEIIIYQQowsAb1BKudLc9zb7/uMhhqlUDnwBuCDLcYxF1mJWSjmVUn8C/gpUAT8A3gd8C3AAvwc+NUlP915g2SRtayJuBN6RZvkhwAv897RGM9Q/gbcS+zx+DagB/qiUemdWoxJCCCHEcU8SwEIIIYQQo9tELNl3ZfJCpVQFcAXwr+MkBjFNlFK+UVb5KvAG4Ata69O01l/VWv9Ga/1fWutLgLOB5smIRWsd1loHJ2NbcRn8fhnTMQGtdXSytjlOO7TWt2ut/1tr/Q1gPdAHfDzLcQkhhBDiOCcJYCGEEEKI0e0GniFW3ZfsOsAC/pyLMSil5iulfqSUekkp1Wf/e1QpdUW6J1BKvU0ptUspFbD//454K4uU9R5SSjXYQ983KaV6lVIdSqmfKqU8abZ7slLqb0qpdnvbLyql3p10/wXAHvvmF5KG0f82aZ25di/aI0qpoFJqp1LqY0opNUxsJyil7rBjO6KU+rKKqVBK/bcdb49S6jdKKe8UxexTSn1NKbVPKRVSSjXbr1H5MDEvs9s59AB3pvsb2evXAB8BHtFafyndOlrrJ7XWv0l6zI1KqYftVhFBpdRe+zVJV1Ge+nxDegAn3XeGUupxpdSAUqrR3qYj099PKXWSUupXSqk99ja6lFL3KqXOSNmGBuYC5ye91gft+9L2AB7Heyaj93OmtNZHgF1Aog3McLEmxfFQ6u+tlLpdKXWRUmqL/V48pJS6YbxxCSGEEOL44xh9FSGEEEIIQWx4+beVUmVa60572duIVeZ25WgM64BXAX8HDgKlwFuAO5VSl2itH4ivqJR6G/A7YBvwGaAI+CbQOEwsXuDfwEPAJ4AzgfcDbcD/S9ru2cD9wH5i7Ql6gY3AL5VSVVrrrwMvE6uS/LYd69/sh++zt1EBPEFsSP1t9rY2AN8FFgEfShPb/cB9wCeB1wCfI1aN+Qb7+T4LnE+spcAR4NOTHLMbeABYCfzSXn8pcD1wllLqDK11ctuOAvv1vM/erpXmNY+7CnABvxlhnVQfB+4C/kGsXcg5wM3AfGLvofGYA9wN/I/97wpir3Ml8J8p6w73+10GnGQ/vgGoBt4NPKSUWqu13mmv91bgh8T+Vl+1l/UNF9g43zOjvp/Hwk6E1wLt43l8ktXAn4BfEPubvwH4oVJqZ/JnWAghhBBiWFpr+Sf/5J/8k3/yT/7Jv+P+H7E+rhp4T9KyBfayrxBLaoWAD9j3LbPv20gsyaqBdyQ99hZ72eJhnu8r9v0LRolrIjEUpNmeh1gy8t6kZU6gBdib/Bh7++HYIeOgbTxkP9dHU5b/A2hNuq2Al4CnAWfKun8BBoAy+/Zie5u3pIn5W/Z9r03Z9t/s5Selie0jKb9fE7Gk43dStr0F6JiCmD9p/61OS1m+wX7MB9LEfHOG79Xv2OuvGcP7O9174QtAFJibtOwdqe9L4LfAwZTHHrTX+880r5EGVmTy+w0TVyXQCvwsZXkD8NAIn5Hk9/543jMjvp8z+Ix+x459FnAKsaS2Tn7PpYs1JY6HUpZp+290atIyN7FE+P9l+veXf/JP/sk/+Sf/5N/x/U9aQAghhBBCZEBrfZRYtWO8BcPbgKPAPbkag9Z6IP6zUspjV0UWEks0rUtadS2xystfJD9Ga/3KcNsmlkz9Wcqyh4FZSqki+/bJwArgD0CJUqoy/o9YCwAvsV61o7ka2Ku1/mtSbBr4L/vmxpFi01qHibXPUMBPU9Z9HChTSpVNcszXAc8CB1O28RTQD1yc5jE/zmC7AMX2/3syXD/xXlBKmUqpUjuWB4m1hFub6XZS9AK/Sln2Xfv/G9KsP+T3S3mPFtjvUYj9vdalrj8GE3rP2FLfz6O5kVjFcCvwPPB6YtXHnxlb6EM8rbXeGr+hY/2YnyJWySyEEEIIMSppASGEEEIIkbn/Bv6slFpMrJXCn7TW4ZSWomOlR19lfDHY/V0/RyxRPH+E511g/38PQ6VbBrHKSH/KsnhbinJiycFl9u0f2P/SqRpmebIFxFoypIq3B1iYJrZAyrIu+//1wywvJxb/ZMW8jFiyuC3DbXRorbvSrZhGPPGbaWISpdTlwOeB04hVRCcrzXQ7KQ5qrUMpy16x/5/6N0n7+ymliolVt19LrF1DsgPjjAvG954Z7f08mj8Qq5Z2EkuqfwYoIVZFPxGH0izrJHaxQgghhBBiVJIAFkIIIYTIXLzX7s+AOmLJ2OHEE5BDJhizFdj/T006TWYM3wc+APwEeAzoIDac/J3Am8b4vKmiI9ynUv7/Rfv509k5zPKJGCm24e6b7JgV8CSxpGs6XSm3x/I+iD//amI9m0cORKmziFUvPw3cQKyVQpDYpGq/ZXomhh7u9/sTcBHwPWAr0E2sGvczTG+Faybv59Ec1Fr/2/75bqXUAeB2YtW6t9nLR7rgYw4Tx2jvWSGEEEKIEUkCWAghhBAiQ1rroFLq/4D3Aa9orZ8ZYfWD9v9PBF5Mc/+JxFoBjGmCqDHGcB3we6319ckLlVLvHibWJWm2sXQs8aXYa//fn5QYG85IibEDwPI0y09Mun+yTFbMe4n1Ch5tG+NxF7H+wu8gNnHfaF5vr39xcpWrUuqyCcaxQCnlSqkCjldQj/o3UUqVEps47ota61tS7vtymoeMpVp+Ot8zaWmt/6CU+ihwi1Lqd1rrPo5VFZelechCjr3/hBBCCCEmjfQAFkIIIYQYm+8Tqw792Cjr/ZtYFfAH7VYMCUqpk4hVPd6ltR6p8nCiMURJqRJUSi0DrklZ7zlifUvfo5QqSFl3IknC54m1BPioUmpW6p1KqeQ2CH32/9MlxjYBi5VSr0l6rAI+bt/81wRiTDVZMf8RWK6UemvqHXYf3vLxBqi1bgZuBS5QSn023TpKqTOVUu+wb0aJJU+NpPtN4BPjjcFWBKReTLjR/v8dGTw+Hlfqe/QC4Iw06/eR/rVOZzrfMyP5OrGJ4f4TQGvdQ+yzdlHySkqp1xOryBZCCCGEmHRSASyEEEIIMQZa65eBWzJY76hS6mZik2I9a1ftthGrSnwfsWTWuCaHyjQG4B/AO5VS/cQSmycQS0S9DKxJ2l5YKfVp4NfA40qp3xObLO5DwHbg1HHGaSml3kmsF+tOpdSvgH3ALOAU4NWA2173iFKqHnijUmo3scroA1rrp4FvAm8A/qiUug3YD1xFrHr0Nq31jvHEN8Uxf9eO8XdKqSuBJ4glOhcBryXWm/m3Ewj108T6On9FKfVqYn/rZqCC2ARzlwHx5PA/iSVmH1BK/TextiRvYOLFIAeAryqlVhJrS3EFscnffqG1HrVNhta6Vym1GfikUspLrN/0ScRalLzE0B7HW4C3KKW+AOwG+rTWm4bZ/LS9Z0bxD2AXcJNS6kd2b+qfAF+w/xaPAauIVWnvm6aYhBBCCHGckQSwEEIIIcQU0Vp/Tym1H/gIscpDH9AC/C/wJa31wSkO4aPEeq/+B7Gk2i7g/cSGwa9JXlFr/Rt7IrlPA98gljC7iVjSc8V4A9BaP6mUOo1YwvPtxBKUbcSS0KkVzG8lljj9DrEk6++Ap7XW7Uqps4GvEZvQrjgpvu+NN7YpjjmglLrYjvE64DXEKsIPAf8DbJ5gjGGl1LXEksnvseMqJdZb+FnsCQLtdR9VSl1HLCH8bWK9oP8M/AKYSCK0idjv9l1ilcCdxP5GXxjDNt5E7LV7B7HPxwvEKtTfClyQsu5niP0tbiKWHD5ErNJ3iOl+zwzHvqDwTeA3wHuBH9kxVRB77V5LrDfzpQw/6aAQQgghxIQorcc68bQQQgghhDheKKX+BSzXWk+kF7AQQgghhBAiS6QHsBBCCCGEQCnltnukJi9bSWzI/ISqVYUQQgghhBDZk7MJYKXUr5VSrUqpHUnLypVS9yul9tj/L7OXK6XUD5VSe5VS25VS4+pTJ4QQQghxHFsDvKSU+rxS6r1KqW8R61s7AHwru6EJIYQQQgghxitnE8DEJsW4PGXZp4EHtNZLgAfs2xCrTFli/3sfsYkVhBBCCCFE5hqI9Qj+AHAbsb6yDwHrtdb7sxiXEEIIIYQQYgJyugewUmoBcIfWepV9+xXgAq11s1JqNvCQ1nqZUupn9s9/TF0vW7ELIYQQQgghhBBCCCFEtuVyBXA61UlJ3Rag2v55LnA4ab0Ge5kQQgghhBBCCCGEEEIctxzZDmC8tNZaKTWm8mWl1PuItYjg/e9//9qampopiU2IfBaNRjFNM9thCJFT5HMhRHry2RBiKPlcCDGUfC6ESE8+G2KyNTc3H/3Zz342K3V5viWAjyilZie1gGi1lzcC85LWq7WXDaK1/jnwc4BbbrlF33LLLVMcrhD5p6mpiTlz5mQ7DCFyinwuhEhPPhtCDCWfCyGGks+FEOnJZ0NMtve///2H0i3PtxYQ/wLebv/8duCfScvfpmLOBLql/68QQgghhBBCCCGEEOJ4l7MVwEqpPwIXAJVKqQbgC8A3gP9TSr0bOAS83l79LuBKYC8wALxz2gMWQgghhBBCCCGEEEKIHJOzCWCt9XXD3HVxmnU1cP3URiSEEEIIIYQQQgghhBD5Jd9aQAghhBBCCCGEEEIIIYTIkCSAhRBCCCGEEEIIIYQQYoaSBLAQQgghhBBCCCGEEELMUJIAFkIIIYQQQgghhBBCiBlKEsBCCCGEEEIIIYQQQggxQ0kCWAghhBBCCCGEEEIIIWYoSQALIYQQQgghhBBCCCHEDCUJYCGEEEIIIYQQQgghhJihJAEshBBCCCGEEEIIIYQQM5QkgIUQQgghhBBCCCGEEGKGkgSwEEIIIYQQQgghhBBCzFCSABZCCCGEEEIIIYQQQogZShLAQgghhBBCCCGEEEIIMUNJAlgIIYQQQgghhBBCCCFmKEkACyGEEEIIIYQQQgghxAwlCWAhhBBCCCGEEEIIIYSYoSQBLIQQQgghhBBCCCGEEDOUJICFEEIIIYQQQgghhBBihpIEsBBCCCGEEEIIIYQQQsxQkgAWQgghhBBCCCGEEEKIGUoSwEIIIYQQQgghhBBCCDFDSQJYCCGEEEIIIYQQQgghZihJAAshhBBCCCGEEEIIIcQMJQlgIYQQQgghhBBCCCGEmKEkASyEEEIIIYQQQgghhBAzlCSAhRBCCCGEEEIIIYQQYoaSBLAQQgghhBBCCCGEEELMUJIAFkIIIYQQQgghhBBCiBlKEsBCCCGEEEIIIYQQQggxQ0kCWAghhBBCCCGEEEIIIWYoSQALIYQQQgghhBBCCCHEDCUJYCGEEEIIIYQQQgghhJihJAEshBBCCCGEEEIIIYQQM5QkgIUQQgghhBBCCCGEEGKGkgSwEEIIIYQQeWjXrl1s2rQp22EIIYQQQogc58h2AEIIIYQQQoyX1hqlVLbDyIo9e/YAJJLAbrebSy+9NJshCSGEEEKIHCQVwEIIIYQQIi/t27ePO+64g02bNhEIBLIdTtYFg0GpCBZCCCGEEENIBbA47sVPlDZs2HDcVhDlgs7OTh577LHE7csvvxyn0zniY7q7uzFNE7fbDUAkEsHhcGBZFqZporUmHA7jdDqJRCK4XC6UUvT39xOJRDBNk/7+fsLhMFpr+vv76enpIRQKEY1G8Xg8KKVoa2tjzpw5RKNRtNasWrUKn883pa+HEEKI0e3cuTPx8/33309FRQVnn312FiPKDZZlYRhS5yGEEEIIIWIkASyE7fDhw9TV1WU7jOPG1q1baWxsBEAphdZ60P333HNPNsIapK+vL/FzU1NT4ufNmzdzySWX4PF4shGWEEKIYbS3t2c7hKy57LLLuPfeewG488472bhxY5YjEkIIIYQQuUJKA8RxLTnp2NbWlsVIji/33ntvIvkLDEn+5oP7778/2yEIIYRIIxwOZzuErHC5XNkOQQghhBBC5CipABbHtVAolPi5s7Mzi5EcPyKRyKDXPdnSpUtZtmwZ/f39NDQ00NLSQigUSvR1NE0z0Zqhrq6O/v5+ysvLaWlpoa2tjdLSUlwuFz6fjwMHDlBbW0skEsHpdFJTU8PLL7/M3LlzMU2Tvr4+6uvrWbNmDW63m/7+fl588UXcbjfBYBAAr9dLYWFholXE6tWr2blzJx0dHdP2egkhhBjdxo0bEy2d7rnnnuOi+vXw4cOJn+O/79lnn80TTzyRrZCEOG74/X68Xm+2wxBCCCEyJglgcVxLrhLy+/1ZjOT40dzcnPg5Odma3PPX5/OxbNkyli1bltE2FyxYMGTZqlWrhiyrqakZdHv16tWJn2fNmpV2O6nWr1+fSDJIj0UhhMgey7IG3U7XTmgm27Zt25BlFRUV0x+IEMeZ5557jqamJubMmcPatWuzHY4QQgiREclciOPacJWoYurEX/PS0lIuvfRSNm7cyMaNG0ed8C0X3XnnnUMSEEIIIaZHJBIZdHvDhg1ZiiQ39fb2ZjsEIWak+LwQyfNDCCGEELlOEsDiuHa89gnMJtM0gVi7h3xVVlaW+PngwYPZC0QIIY5j0WgUSD8K5HiqBL7qqqsG3S4qKgLkIrcQQgghhDhGEsDiuCbVm9MvnnTPx4rfuHPOOYfZs2cD+f17CCFEPotXAKf7Lp/plXmPPvpo4ufUVkTx16O+vn5aYxLieONwSDdFIYQQ+UMSwOK4ljhpPI4qhbJtJiSAARYtWgSQmKBOCCHE9BoYGADST+J66NCh6Q5nWqUbwdT/t7/RUFfHCb/6FQCtra3THZYQx4V4lb303BZCCJFP8u6ypVJqGfC/SYtOAD4PlALvBdrs5Tdrre+a3uhEvolGoyz8+c8pfeEFtv34x9kO57jQ2NgIDE0A9/3hD3R95jPZCGlcSv7xD0ASwEIIkS3xlkK1tbWJZfPmzePw4cO0t7dnK6xpEU9+r1+/HoDQ9u10fvSjADgefRTe8AZpASHEFIn311ZKZTkSIYQQInN5VwGstX5Fa32K1voUYC0wAPzdvvt78fsk+SsyobXGP2cOvUuXDurrKqZOKBRi1ac/Te8HP0jjqlU01NXRUFdH12c+g3PVqmyHl7Hua65hzfXXD5mESAghxPRoa4td8z9y5Ehi2axZsxI/d3d3T3tM0yXe47iwsBCAVnsCvFq77cPsf/0rO4EJcRzweDzAsT7kQgghRD7IuwrgFBcD+7TWh+QKrBiP+IFb3+LFksibJlVVVQSrqnD++9+Dlpd9//v4/uM/xr1drfW0VmI01NUBcvAvJsfAwAAPPPAApmly5ZVXZjscIaZcJBIhGo3idrvHvY148jPekz31556eHkpKSsYfZI7atGlT4meXy5X4ueruu2P/37QJffXVNL/61Yn74i2vUvsFCyHGzuv1EggE5NxBCCFEXsn3BPAbgT8m3f6QUuptwLPATVrrQU3hlFLvA94HcP3118/4CULE6FpaWoj4/UCsgkjeE9DR0TGl229paaEqaWIa46mnAOgGuvPo9Teeeoq9n/oULfv3M2fOnGyHI6bYVH8u9uzZkxiyLvshkU/G+9m47777AHjVq1417qRkS0sL7e3tdHd3D/rcdHV1EY1GeeCBB7j00kvHte1cltzeorGxEfr7AThaVgZNTTBrFgfOO4/29nYaGhowDCPxep9//vkTSrqLzEz1d4bIriNHjtDb20swGJTv7DGQz4UQ6clnQ0yXvE0AK6VcwNVAvGnoT4AvA9r+/3eAdyU/Rmv9c+DnALfccouWpI3o7++ny+sFpSgtLZVEnm0qX4eDBw9y9LLLWDsDei53dHbSY5ryvpkhLMvizjvvZMmSJSxfvnzI/VP5d9Za09PTM+XPI8RUGM97Nj55kmmag6p2x+K5556joryc2d3d1KxZk1h+wQUXsG3btnHHluvir92cOXOY1dND62WX4Vi8mJqk37XFMKioqOD555+nsLAw8ZgdO3awcePGrMR9vJmJ7z0RU15ejsvloqCgQP7OYySvlxDpyWdDTId8Hgd2BbBVa30EQGt9RGsd1VpbwC+A07MancgLlmWBUpiGIcO4pkl7ezvWDGmb0LtsGYUynHbGiFfV7dmzZ9qfOz6hkxDHA7898gZIXPgYLyMYJPK2tw1aFu/pX1NTM6Ft56J4KweAtWvXouwJVQuuvnrQelUPPpj4ua+vb3qCE+I4Ef8cyrmDEEKIfJLPmYvrSGr/oJRKLh95DbBj2iMSeefw4cOgNRgG0VAoMamKEJkwCwtxysH/jJGcWJluyZNYCTHTdXV1JX6e6ERt7qNHhyyLt5SIT9Q0k9x5552DbutAAKOyEsOu8E0sN4zY8Y0QYtLFjxeyedwghBBCjFVeJoCVUj7gEuBvSYu/pZR6USm1HbgQ+FhWghN5JV6FVPTii3iOHJEr+dPA7XbjsCuW8l5BAVoqN2eMfruPZjZUVVVl7bmFmG7JFe+jJYCPHj06YpWwu7UViCVC4+IJ4IMHD04gyvxg9fZidXVhVlcPWu679lquWLOGU045JTuBpdHf3z8o+S9EvpIEsBBCiHyUlwlgrXW/1rpCa92dtOytWuuTtNYna62v1lo3ZzNGkR8WLFgASuHfuBGUkgTwdIhEMGfKBDQeDyQlHUR+Sx6WPt3qkyZGFGKmS04AB0bYh1qWxZNPPsnDDz88bKJFGwa+664j2tKSWGaa5uQFm2NOOOEEINbnGCDa0ACRCCql2tl70UVYXV3MmzdvyDaCwSDRaJRNmzaxadOmKY85bvPmzTz66KMj/s2FmAytra0Tbi8zkuQEsIweFEIIkS/ydhI4ISaDZVmgNUZZGWZf35AEcPzE6PLLL8c5U6pWsyzS28vADKmYUG434SxWjYrJVVBQkPg5NSnS3t6emERpstXW1srFJ3FcybTaPrndgd/vx+fzJW7HPzPuzk7w+Wg57zzKf/xjCjZsSFQAQ2yCRaXUJEWefVG7h378mMQoLY39f9asQeuZc+YQfOIJXCedNGQbbW1tg6qjd+/ezdKlSycU01133QXA6tWrqaurG3H9+++/P/GzTEgnMqW1JhKJjHo8HgwGefrpp4Gpe39ZkQhGIIDl8cy4fYwQQoiZKy8rgIWYLPFJ4BylpZh+P5FIhM2bNw+pirnnnnuyGOXMoiIRtGNmXHuKmiYqFMp2GGKSZGsoZ0NDA9VJw7ez2YpCiOkwnkkP4xOZhcNh4FjFftnTT1P07ncD0PHBDwIMSgDnWssBy7LYtGkTDQ0N43p8/PePJ8F0KETp17+O68QTB61nzptH91e/mnYbR48epbOzM3H7lVdeSRz3JC+P279//7DVwqFQKJH8BXjhhRdobGxMTKoZDoc5cuTIsJXGhw4dGunXFSLhjjvu4J577qGjoyOxbNeuXRw8eJC2trbEsn379iV+fjBpMsR0XnrpJVqSRg9kyrtvH6tvugk4dlFGCBHT1tY24f7+Ivvq6+vZtGmTjHKYYWZGFkaIcYrv0LTPh+n3EwqFJPkyhSzLwtHXR/kMmZFcu92YcuA/Y2Szl188WQLQ0dExqNJRiJlmPAngeOIU4Nxzz018f4dPPx3HggWJ9aItLZg1NYnbO3bs4Nxzz51YwJPopZdeAuD555+ntraWo0eP8uSTTwJwySWXjDpxXW9vL5DU5iIcxn3mmUPWM8vLAWioq2MNUP/GN1LgcnH4jDNiE+AO47HHHqO0tDSRON+4cWMiZhg6OiKdrVu3jrpO3Pbt25k/f37G64vjj2VZg0YDPP7442zcuDGj92JfXx8vvPACJ598cqJKN/Vx+/fvH/K4devWUZO0H0mNx3K5CNnV99IHWIhj9u7dy8svv5y47XQ6WbFiBUePHqWxsTGLkWWuuLgYv9+fuOA6HaZypOFwTj31VJRSzJkzJ+39L7zwAhC70HZiykVmkb8kASyOa4mDNp8Pw+9PnFjFrVq1ih07dmQhspkp/nqHli3LciSTw+XzEZ3GgwMxtVKreM466ywqKysBaGpqGvYAabzC4XBidEFy/+Fdu3al7dspxEyhtQatmf/733Po7W+no6ODcjthOZzkE7FHH3008XOB1wtA1Z13Enj4YYLPPkvBhg2J+3OtAji59UJqIur+++8fdch66nGKDoVQLteoz1v3pz8BcPiMM0ZdN/k1m44ewZ2dnZSVlU3584j89PDDDw9ZFgwGR3yMt76eaEEBocpK6uvrx9xnf8uWLcN+FqPRKEYwSMh+z0oCWIhjkpO/EPvujicS88VU9g/PJfGLtc8991ximcfj4VWvehVNTU2JZXv37pUE8AwiLSDEcS1+0OatqMAMBnEnTU62ceNGyv7nf1hz/fUAMvxhEkQiEVQkQsc4qr9ykXK5IBKR98YMkfp3nOor8cP1MZQJksTxwNndTfkzzwAMGtI9nOFOII2//hUA10kn4Vy6lL5f/WrygpxkU1FNpIPBYRPAtfX11NbX41y5Mu39oyXdJ9vFF1/Mxo0b2bhxY2ISO4idXAoxnL40o8aSWz6ks/yb32TlF74w+sbHkby1LAsjGMSyq/UlASyEmCkCgQB33HHHkJE80gpi5pAK4Bx1//33Y1kWl112WbZDmdEsy8IBuMvKMIJBtm3bBpbFmhtuoMFO/MbdcccdMlnJBGmtMUIhSuyqyrzncKCiUZkAZIZIPYmTv6kQU8ccGCBg975OtDMYh9YLLyTeQMBz/vkM/POfkxDd1JjofALpLg7pUAiVdPE6He9VV2H19hKtr+fsFSt4YudOIJZ437hxI/39/Sil8Hq93HHHHcNu59RTT2Xr1q1UV1fT3t5OcXExFRUVzJs3D4fDgdPp5IknnqCvr29Qsvuiiy4a0tamqKgo8XMmFwDE8Sm5Gr24uJi5c+fy8ssvJ9omVVRUcPbZZyfWCQQCmKZJq9eL9vupu/NO6q+66tgGo1EwTebOnYthGFRefTXmeeex9dWvxggGiRQXg/3dP9zIBMuyMMJhtL3fkgSwEEOtWLGCnTt3UlZWxhlnnEEwGKSwsJDGxka2bt3Khg0bUEoRjUaxLGtIUUQ82aiUwrIs+vr68Pv9g+bMSBaNRqmvr8fv91NTU0NBQQGGYeB0OlFKEQqFME0TwzDGfHzf3d2NaZoUFhaO78WwHTx4kIKCAqqqqobclzzSMPl311pjWdaYj5Pi56aWZRGNRjFNk87OTkzTxOfzsW/fPvbs2TOmbba3tydGRor8JQngHBSNRhMH+ZJYmlpWNIpSiubmZop37qTlqqtw2ROgFLzhDZR97Ws0LlqUOGAUE6O1xnPkCN6FC7MdyqQwXC6UfeCSPOmQyE/xFhC1tbWsWrVqWp7T6/Um2j+YpimTyYjjhqOvj4h9MtXc3MzCcX4vLFq0KPGzcrvxb9oEt93GxRdfzAMPPDDtPfWm0v333z9kmfb7UXYbjOF4LrqInm99CwDri1+Ea68FwNHTg9Z6UHJ248aN9Pb24nQ6Bz1feXk5c+fOZe7cuSM+1znnnAPEqoVOOOEEViZVH/f+8pd0f+lL1NrD8U866SRefPHFGfU3EpMrud3LueecQ9MrrwAkWjporen/4x9xnnwyrpUr8Xg8HH3f+9B+P661a6m46y6Wv/e97P385zn49rez+uMfH/Ic0UceYfUjjwxa9vyPfpToNTxk/WgUIxLB09wMSAJYiGQlJSV0d3ezYMGCQd/P8QRv6veIaZppk5vJ+Q/DMCguLqa4uHjY5zVNc8TjCFcGrZKGU1JSMu7HJluQNF/BSJJ/d6XUuC6Sx7dhGEbiHDX5u3b58uUsX74cYFCSObntU/xvGXfw4EFJAM8AkgDOQcmzKR85cmTYSQjExFmRCJgmCxYsoMmezMHd1kbp735H4YUXxtYpKaHqgQdovfRSdu3aldhZjkRrHat2laTgIJZlEfV4sGbKe9rhwIhE5OB/hoj31lyxYsWw7Rkm23nnnce9994LyEzi4vhi+v0U7tvHmuuv5/nbbhv/dlJPjNzuQd+/uTChYiQS4e67707cvuyyyxKf+4svvhiPxzNokquxiLa0jFoBbNjVtjWPPcbRd7yDDRs20NLSQvSMM+i3LArf+tZB68erc5OTXw11dVg7d2IMUwEV3LKFtte+NpHcTZc403Zxw8A//kH06FFq3vIWXnzxxQx/U3E8q6urI/Cvf8FHPkLltddy1G4hMv+66+gc5jFVf/87DXV1tL3mNZRA2uQvQNl//Redn/gEnosuIrB5MwC+/fvpX7yY3t7eQdXqEDuWVaEQfYsXJ24LIWKcTuewSV2Rm5KTzKnf3dFoNJGbarYveon8JtmpHNfa2prtEGY0HQqB00l5eTn+2bMBmPeHP+BKGvJV+c1vMvef/8TR25vxUIm77rqLO++8c1pnD80HWmtUNIrKgRPyyaDsCmDpiTQzxIchT+eoi4lUJAiRz8yBASIf/jDBya7+DAaJHj6cOJnJVnLmueeeY9OmTWzatGlQ8hdin/t4L9z4MNXhtLa2JrYTd/LJJyd+7v/970eNJZ4gdtTVEdm7l8b585k9ezautWvpv/12ur/9bQCspF6rHR/96JDtNK1YMWSZtizab7iBwL//DUBo+3asgYFB2wKItrcnqpA7Pvxhur/0JTx2D1U5qRSjqdi4ka6vfAWAeX/+MwAn/OQnw64fvxAx1550cbY9yVH5D37A3H37Ev2xa+vr8b3hDdTW11P5298yd/duKv/0J0q3bQPg8ccfH7LtaDSKEQ6D2w125ZwQIiYUCuFUioa6OqKdnRx9z3vQ9mckcvAg0ZYWum65BR0M0vXVr9L705/Sdt11tJx/Pq2vfS1dn/88DXV1NNTV0fWVryR+bqiro+VVr6Llggvo+dGPCDz0ENGjRwEI79+PZbeL0Umfx/DevehIhIE77xzynQSgo1F0JHLs9gifZR2JoAMBIocPEzl0iOBzz9Fz661ou3gj+NRTsfXCYayeHrRlxf5FIuhQiMBDD6GDwdiyYBD/Aw8Q3rMHq7c3tryvD2tgIBFDclzpbk8Hq7eXI2vXctpppwGxAhmR/6QCOMdJX7QpFg6DXem3pK6O0FNP4e7owJk0/LvgyivpAEqfe46jF1zAU089NWjyieXLl3Po0KHEMO5k9913HyeddBIOh4Pu7m56enqoqanB7XbT3t6eGNLidrsJBAJEIhE6OztxOp0sWLAgUbkUiUSIRqO4XK5EP6B4e5BIJEIwGMQ0TTweT05XHccnzhhtuGq+MNzuRAsIkf+qqqpobW3F4Zjer8YLL7yQBx98cFqfU4hsM4JBSq+9lkNPP82sWbPSruPz+ejv7x/Tdos//nEiDQ047SGm071/DgaD3HfffcPev2zZsoy3pbXm6aefHrJ8/vz5ifuLPvKRUbdjVlUx98CBIctDdlIs/PLLmNXVdH32s8zZvp3w/v0M/O1vmHPnUvC619H3858fiykUov1DH6Ly5z+n7ze/oStloq3WDRsSP9fW16OjURrTDMtVhYU01NWBXf0tLc/EaKy2NuYeOMDu888HoGTHDir/+Ec869cP+xhlGIlkMID3yitRI4zwUR4PrlWrqHrwQRpf+9q0hRyWZWGEQuiiIjkGFCJFT08PhXbBVPPq1QA0pml90PfrXw998IEDhLZsObZO0ncPQGT37thz/Nd/TVK0Exe/sDkZmiZtS2Mzd/dulH1BNllo2zasjg68Uqwyoxy3CeCenp5B1RRxXq+X0047jeLiYhoaGhK9yeIJv5qaGqqrq3nhhRdYt24dnZ2dlJWVsWXLFmbPnj2oisE0TU477TR8Ph8tLS1AbCbb+qQDkbq6usTtU045JTYJGbDGnoBsIsMixeh0OAx2sqfvZz9jPrHJUlTKsJXqhx6CCy7g6PnnD5l5eNeuXcNu37KsITOXZ1rVfSDNyVomLrvsspytKtRaY4TDab9k8pGlFEpaQMwYyf2yplNhYWFiyFX8e6mtrW3YpJgQM4EZCuGrrMQ5MEC/PUlJJBLBndTOwOVyUfOd7+Dbs4ft3/lO2u3olInRzKoqer71LSr/9jdgahPALS0tbNmyhYsvvpiCggKAEZO/559//og9DCGWQI6/BiNNyAag+/oS7R1GEz+umXvwII0LFsSSr0m6PvtZAJqSqot7f/Qjen/0IwAK3/te+n7xCxrtYe+pjweYe+gQjfPnJ273/f73dH3uc4nbNU89ReDBB/GsX0/LeecBJFqAdHR0SC9gkVbVffehfD5qHn4YZZoUO52ce+659BcXj5j8TVV+662jtksBMOzPaN3tt1P/1rfS09PDww8/DMSGRw8MDGAEg4Q8HjkGFCKNJd//PuU/+hG9P/4xVf/6F5gmwWeewTF/PobPR9O6dVRv2oRZW0t41y6ihw/jPvtsjNJSdDCIKijAOnoUa2AAx4IFhHfsILJ/P5GDByn64AexOjuxOjvp/eUviezfj+dVr6LnG99IG0vpV76C+4wziOzfT3jXLsK7duG96iocS5ZgVlfHLgg5HCiHA5Qi2tSE1dlJtL0dzznnEDl8mK5bbsFqa6P81luxuruJNjRgzp0LkQiqoACjrAyrqwvHvHlgGOBwYLW2EqmvR7lcaMtCeb20v/OdYFkUffjDuE8/ndD27SivFx0I0O3zUbh7N8EnniC0deuYXm+juhrryJFx/70aly4ddHv2M89glJZy9M1vtldopHj7dqwM2mCK3HfcJoCH4/f7B004AAxK+LW0tCSSuVuSrlDB0CFs0Wg0beVGsuRkcDz5G6dzuJJzptBJFcCY5rCTvTkWLqRz7VocPT1EMmgE7+jtZem3v83OL35xskMe1a5duwYND80llmXFWkDkaIJ6rLp6eiggVqEt8l8uTeb31FNPpe2hKcRMocJhHAUFBGtriUajPPTQQwwMDAx630ciEYpH6BF77qFD9P30p5TefHNimfv88xn45z8Tn+WpTM7EjwMfeeQRPB5Poo94Oq961avwZjD6Zdu2bZxxxhlDlns8nsQEwXHRo0cxxpg0VYZB8cc+Rv///R/l3/se7jPPTCRz5+zYQZM9Aqrm0UdpOffcxOOKb7iBkk9/msZFiyi+8UZ6vvtdyr7zHTpvuonCd76Tvt/8JtZHcO5cSr/0Jdrf/e5E8rfsW99Ceb045syh0D6hrPjtb2l/xzsS229paZEEsGBgYADLsihM6jU995//RBO7uANQsGEDJaWl9I+x/VbB1VdnvK7vppvgO9+h/q1vTSR/4dhF2uXbtjEwfz6mHa8QgkEt8bwbN1Lw6lcnbnvOPjvxc21SS0X3aaeB3WIAjrUsMmtqiJ+Ru04+GVfSua1ZXY1ZXU253b4IoPiDHxwxNueyZXivuGLU38FRVwdJFzidixYx67//e/BKa9cOfeC8eYNuGgsW4EipfJ6TkutJ/p16mpooueaaUeObLFprCAbB5eLIxRcT2bcvcV/z6acnfnafcw7+DRtYBPS99rXTFp+YOpIAzkX2gYSSA4opp0OhxFCw2gMHaH3d6yhJM0mEUooF7343ZR/8IM/fdhvFO3aw6Cc/oefkk2m98UY8gQALGxvxut24V66k7TWviT3QsnCGw0S1prK4mFlK0eN20+n34+/uBq2JejyceOKJHD1yhCLTxO3zsWfnTiI+H+vPPZfCwkL6entpaGhgwcKFmKZJMBhMtIUoKCjA5XTy4vbtHEmpTs41WmtUJIKRQQVGPqioqMDP9PaMFVMnGo1mPQF85pln8pTdR0yIGc0e8j/r7rvpfsMbGBgYAAZfiIknVKNvfzsQG+GyefPmxLBsz6mn4vnTnwZt1qyuxmWfTBqGMWXJmZ6ensTP4XA47VDx8VzEiY8SSt7eRRddlHYyO93TgzGO2ckL3/9+er73PYzqagDmvPIKwYcfxiguHjRcfk6aSd/i9xfbPYJ9114LQKl9wXv2k08OWr/y9ttxr18/ZGSV96KLkn4RTWtrKytXrkwk2DZs2DAp361aa4LBIC6XK+v794mKv5fz/fcYyQMPPADAlVdemSis8c+ezZKkgprwiy/S94c/oEe44DJRpTfcQMu//jXs/V2nnELBggWglCSAhbAlf2+pGbyfmgmUUmCPyK1JakOng0Gs/n50fz9GcTHa76f9G98g9Le/yb5uhjhuE8DFxcVDDsz7+/sTFRx+v5/u7m4W2gk3wzASB1zxPmUDAwNEIhGKiorQWhMOhzEMA6fTSXd3N48//jhLly4lHA7T3d2NaZqJ6uG4srIyTjvtNF544QW6urpYsmQJroMHKfzP/6RvhMkNxCSJRI5VAANVf/nLsKu67St78fYcAMXbt1NsV7CE7X/J1txww5DtVNr/UtUm/XyS/f8B+x9AOdDDUPHD3zn2v74Rhp9mm2VZKMsaciKYr5xOJ36QSeBmiFzouZ7c9qGlpYWamposRiPEFLKTe81XXMFAWxvYLRRSL8Q0X3klS0tLE8dsl19+eeI4rPcXvxhUQQOxk87eH/yAkptuwrIsjtqTxEy25+z+uekUFhZy4YUXjml7xcXFg5LK99xzT+LndMlfAKu7e1wJYMN+rePVSYbXi/fyy4eul5L8HYu5u3eD2z1iEre2vp6GujoK9+yhb+lSHnroocR9qe0vHA4H8+fPZ/78+Xg8Hp5++mna29spLy8f0767pKSEhQsXEg6Hqays5MCBA0SjUZqbmyf15La9vT2rFc3z588nFAoBY59k74orrhi2F77Wmubm5mHf/2vWrKG2tjbtfRA71wqFQpimSUFBAQ6HA631kL93fNZ5tEYtWjToPqunh67PfIbq++8fw281NsowCNoVx8MpraqiwS7GEEKQ6NlvzZDzvOORcrsx3W4oL48tKCmh8GtfY+fAAG7Z180Ix20COJ34AXZpaSmlpaXMnj077Xrxg9l4v7f4suS+dSUlJVx55ZUZP3fycD//3r3oHB3CP9MkVwCPxrV6NXNeeommlSupvP12POedR88Pf0j0yBHMykoKXvMazJoalMdD/z/+QeeHP4zr9NMpuflmgo8+inPZMpwnnwyRCNH2dvx3343h86FDIXzXXhubyVQpHPPmEXz6aTo+9KHYCZRpooNBIgcO4Fy6FD0wgI5GYz2D+voSwz97WlroPeusqXy5JiyeKDVmyIGBUgrsCfmEmGxbtmyRNhBixguXlWEEg0TtY6rkJJxhGPgKChLJ4rj4cZhyuzHTHKsVxEfhTKG+NDOKx401+Quwbt26RPVjpt8pR9/9bqrvvHPMzwWgSkqmdPRKpr3+i3/0I1x2dedILTQikQj79u1jX9IwVRj7hbvu7u4hLddmokOHDo37sXffffe4H/v888/z/PPPj/vxqVxHj+LcuXPQsll/+QuNCxbgHMOEiuNR+fjjHH7Tm9LeN3/BAqJuN0Z/vxwDCmEzDAMsi357ZIiYGQzDQE/hiCoxvY7fBHB395AJLByLF1Py//4fnnPOAYcD3d9PpL4eR20tVkcHmCZGURGquJjQli24TjkFHQigCgoIPvkkzuXLCe/cSeTAAbq+9CVqHnwwdmLicsV6y0YioBThV17BrKoifOAA7jVriBw+TPTIEdxnnUVkzx56br2V8h/8AAAVChEKhUad1Mvv97Njxw7WrVs3oZflqaeeoq2tjauuumpGDzFLCIdjf58MGUVFg4ZHFn/4w2nX811zDZ0f/nCioth96qmD7nfU1eFes2bwsqQ+QQUbN1KQlPhRDgcuuy/foP65SRchHKWlNF9xBf0tLSzP0SbtM234olIKlJKD/xki+aJeNq1atYodO3YA8NJLL1FTUyO9McXMY+83LZcLw65UhGPfE1prLMsiGAzi37SJkhtvpGntWuYkVR7qUCgxYVOyaJbaIZ133nmUjKMiFwbvf9K1k0jHrKnBkTTp2ljMHaG38nQqOPVU5t9wAx05fgFbZEfB4cO0XHUVye9yZRiDjsWnilVQgKexEdeJJ3L62rX8+4EHYhM8AW6XC7/LherpkQpgIWydnZ2YAwOoCVyAErnHNM1Y20rZ180Ix28COM1wqMjevbTbfeYmQ3yG4/FwLFhA/ZvehKO/n5aWFurSzLac7N///jcQm5xgIhVj8Qnv+vv7KcpwZul8pkMhmKJ+tJWpDeOng1IjVtBkm9Y60fdxJoj/HpIAnhksyxr1Ytt0WLhwYSIBvH//fvbv3z9p/TCFyDVRtxsjGIzdsJO+QGLCs0g0infDBnQ0ipWS2NV9fag0bQpc6SZomQbjTf7GVVdXc+TIkYzbVjjmzUtMmJOvHPPm0W1f4I5LLkLQWtPW1sbAwADFxcW4XC4OHz7MCSecQHNzM0VFRYkLZNFoFNM0iUQihEIhnE4nzqRRXvH+wslWr16N0+mkqKho0MRjE9XU1MScOXMmbXuZCtmFI4cOHcI0TSoqKigtLWVgYACXy0UoFEoc38c/YwMDA5SWlgKxkSeZvP/mzJnD2rVrB/Xs9vv9ifORkfh8vsRQ8WSXX34599x9d2wuFHukmLexke6TThqy7nQo/c//5PTuborPO4+217+eNU8/zbbvf5+i3bvp/fGPcf3gByjLkqo4IWxKKYxgEMeZZ2Y7FDGJDMOY8oInrTXd3d243W7cbjddXV24XC4etPsTX3rppYNG2/f397N58+bE7XXr1knbvAwdvwng5cupTZo4RGsNoVCsGlRrsCysnh4Mn29QhWjyCbhlH7yoeNVG/PGA7u/Hf9ddeC+9lMihQ1i9vRjFxfR897toy8K1YgXOZcuw+voouOYa+n7/e6KHD1Pwutehg0GUUoSLinD09lJfXz9qAjiZnoQE2+HDh1mxYsWEtpHr4hOSqSlKdHvOP39Ktjvs89nDLYdrXZIL4gfJMyWRJQng8YlGo2zZsoV169YRCARwuVx0d3dTUFAQ6+vZ20soFCIcDlNSUoLP58PhcKCUYu/evZSUlFBRUYFpmiiliEajaK0xTTPWZ1qp2HAl++8SiURwOByJC1zxXu1aa1wuFz09PTidTgKBQOKEONvOP//8QTOPh8PhnEhOCzFR8e8Bl30gb7lcGMEgnsZGau66C8tunxAIBMD+PIeeeQbd3w9uN1ZXF4adrNJ+PypNr9L+22+n6AMfYPbs2TQ3NycSg5MleZ9/1VVXsXXrVlauXDnh7RYVFXHkyBFeeumljNZ3Jc2cns8CScctc//6V5quvz5R4amUoiqlF+uJJ54IwIKUGdbjf2OHw5HoYWt1dRF85hk8l1ySNy11tH0eokwz8V5TShFpbCR6+DDOk06KnZ+k4XK5cLlcQ96P8YsTXq83sSxedZ5cfX7WGCuxk0d0eb3eCb/G5U8+ScWTT7LnppvwHj5MpLCQWVlKAHuvvJLA5s10fOADhOw2JXW33075s8/GWr45nRCNSgJYCFtrayvOnh4i2Q5ETKr4fn4s+7rki4Op/H4/W7dupbCwkPoMR3PcN8ocR1u2bBmybPny5SxZsgSIHVMGg8EJX6gfTnt7O0888cSYHnPZZZdl5dzu+E0Ap1BKHasEVQoMAzPe/HoYQw6+kq5KqMJCfK9/PQAu+0QFoPK3v027reKkicWOPYFBQX097WNI/sLgRMFzzz1HX18f548xGblv377jIwEcDqMz7AGc60zTpHTrVjqShtLmmkQP4JnUAgJJAI9VfHKXxCQvAgD//ffjveQSIDYhVLLe3l4qKirYsWMHBw4cGHSf1+vF7/cP2V5ylZXP58PlcuHz+TAMg4qKCnw+H62trXR0dNDV1YXD4aCmpoaDBw+OKW6pThZjEX+vhuyq3yUrVtDy97/Tc9JJuLq7B7WAMEIhyufMwSwsJHLwIASDNJ18ciI52P/HP1Lymc8MeQ6rvZ2mE0/E/Oc/Y7cta1ITwEeOHEn8bBgGp01SIjZ+ASr5QtSll146KdvOZVZSEr/KruiJt2lzr19P5W9+k7ancLSlBbOmBh0IYPX10f7+9+Ooq8O5ahX9v/sdhe97H1033zzoMbX19Vh+P8rtRhkGOhqN9fIPhYg2N9PzX/+Ff5K+mxomZSvDq3niCYKPPorV3Y2ORHAuWUK0rQ3nihW4VqxAh8NgGOi+Pvpuvx3ldGJUVBB8+mn8//gHpV/5CmiNWV1N4MEHcSxbhuukk3CP0k5OR6MEH32U0PPPE96zB789gVvZ975HwWtegxrHMV787z0faD/zTFQoxPJvfIPG17yGxqNHycbMKDoSofurX03c9m3aRPenPgXA7GeeoeO++1DRaGKyPSGOdxUVFfi7uyk94YRshyImkVIKBUQzTAAnj7Y544wzeNq+gJYqtYe/CoXQDgcohevoUULl5Sz89a9pufRS/PPmJVrwABCNUv3AA8yxj/Oev+22IdvftWsXu3btyijmbOjs7KS6unran1cSwDmsevVq2h97bMyPS04ANzU1AbHJILZv3z7i4/KlMmKyRCIRjEiE9qRZt/Nd59lnY6VJBOWKGdkDGEkAi8nR/u53D+preNlll3HvvfcCsYTTzp076erqGvK4dMlfYNAQ2/7+fvr7++ns7ARIe8U9EomMOfkLcMcddxx33x9i4uIXOcr6++G++/AdPIgRDPLII4+wcePG2Hd0OIxZWIjnlFNou+46AIxZsxLb8A3Ttqv64Yc5cv75ie+aaDQ6qBXARE1VH7zUGE8//fRBQx6TxVsqzQTaNGNzZShF4Qc/iO+aazhiJ76Djz9O49KlGW8rtGUL/PWvAHTdfDNGZSW+N7+ZXntujdT5P6aUPVFsKseiRUT27YvN/dHURNTul+k+7zwc8+djdXaiIxEC99xzbFMFBRS+/e0UvutdBLdsoeODH6Tl7LMnFF7X5z436jqOZcvwXHABfT/72ajrdn7sY3R+7GNU3n47R9/yFkpuvhnXqafS9+tfo7xeBuy/S7LyW29lIKU1h6OvD2d3NwBGMIhvlIKcqeJcvHjQ7dLlywn09qLsyeeiSqEsiwMHDrAqpY2JEMejSCSCu7UVx/r12Q5FTDalsDI49klt7zNc8hcAy2LxrbdS9MorI26zNIOJW9fYxZTBykrcR49y8O1vp/O00wYnjadY4SuvsOSHPwRg2/e/jxEO4+zqouDQIdAaf10dy7/+dcIlJRx629uoztK5kySAc9jCVavoeOSRjNc3/H4suxLM5/MNSkqNlvyFob3RJtpPONdFo1FUJBK70jRTeL2Q6wlge3j+TCAJ4LGxLCuRgITYcOd4z+ri4mJCodCwLRiqq6upqanB4XDQ399PV1cXVVVVuN1ufD4f3d3dOBwO3G43zc3NBAIBamtraW9vx+12c/DgQWpra7Esi0OHDnHSSSfh9/vxeDzU1NTQ3d3NwMAAtbW10/JapGWasRZAdsLH5XKxYsUKdu7cic/nY9++fdmLTYhJEonYg0Pt/afTnrS0aPdugnaix7IsQqEQRjCI6fNhlJSge3uZvXUrfb///ajP4Vy4kKKPfIQuu+p3ModoJx8rTfZIKV/KyLJZScnuVFZXF5H9+yf1+bPlhHCY7iNHWPaLX9DX2krppz896GJYImlrmhhlZVhHj1Lxy18S2rYNR10dvje+ER0MoqNRlMcTq4jt68MoK8Ow+/qW3HTToOSvUVaG1dnJ7OefjyVpIxHMSewfOJU9gAs2bKBgw4a09+lIBCIRglu3YrW14Vi6FOeiRbH7/H50IIAxa1as+jkUiv0bGMCorATLInLwIEcuuiixvcgrr9CX5uS85pFHcCxYQLS9HdPuway1pnH+fI6+5S0AdH/ta6P+Lh0f+hAAZd/5Dr5rr6Vxzx76f/hDHHYSYfZddzHnxz8ew6szeZR9QWbWX/+aqIqOHj5MlX1h1l1QgIpGmTt3blbiEyLXRCIRLLcbp3wmZhzldGJlMNph8+bNmAMDnPyJT/D8rbeCUpRt2cKC3/6Wl774RUIVFayx9/uZqvj1r2l/17sGLSv68IcpvuEGlNuN1d9Pk90aym33sF/wu9+x4He/4/lbb8W3bx9Lv/e9xGPjSWKAlksvpfzpp+lbsoSmV7861tfd4aDiyScp27qVwOzZdK1ezayHHqJw/37q3/hGlNYcPfdcvA0NBCsrWf3xjw+J+ZSPfnTY38fZ3c3in/wEPvGJMb0Ok2UGZb5mHofHQ9UDD2Bcc83o6/b2ctKnP82L3/gGTz75ZKJ6ZsyiUQrq6xlYuBBIP2FGsuLiYnoyqKCND0Wurq7G4/HQ1NSUdpZrldRg3OPxJJJBycsLCwspLy/HMAy6u7sHJZRS103H7XYTtIeelkUig4Ye5jvt8cT6JOaomVoBLP3fMnPPPfcMqpy74IILJm3byZNWlpWVJX6O9448IWk42nI74ZSsvLyc8ixVGcUZJSVYvb2YSRV/8dEcyRfxiouLWblyJUeOHKGrqysxhGrFihWEw2H6+/spKyvD7/cTDofRWrNixQqcTmesj2QkknjvxveFpmkmeijHr947HA6CwWCi6njWrFlEo1GKiopQSrF161ZaW1un/HURM0t8gqn4sYPr5GODuw37uODOO+8EwOv3Ey0qik3YCpiVlQTuuYeSG28EIHD//ZTcdFPa5wlt3YpxxRXA2PfR3d3dNDU1JXrNQiy5dYc91D2utbWVRXZybTJ4UtocjPRdqXt7p32ugalS+Na3ci4wcOGFlHzyk0Purx2mR6A3qT2GcruJN6Ixy8og6XtgtO3MJMrhAIcDT5rqYOVyQVL/Q+VyxZbFJ78zDJyLFw96nXQkgg6HMZJ6ByeLJ38hdkxUW18fS8Rn0HJFa01o61Z6f/hDfNdeC4CzpAQVDuM7cICOj32M8u99L6vHjOneM/GLVobLhZrk9jJC5LMDBw5QYVk4UtqYifynnU50fMLe+DKtuffee4lEIlx55ZWJY7eil18GGJLoXfmFLyR+VkVFeC66CPfpp+OYPx/n0qWxC5GRCLhciRZN8e+S2vp6dCCADoUwUt5fhs8Xa+/U3w+GgeH1Ji74xmNwrlhBeOdO4FiSGKDG7i1c/uyzlD/77JDf29vURNlzzyVu19lziM373/8dsm7JZz5D4fvfD0rh/+c/8VxwAbjdKLd7UIEPWmf0HTlVZk7mawYyZs2ia/XqxMRFwwmHw5Q/9RQAlY8+SsuVV9LR0ZG2EfVpp52WdpKweKLX2dPDsm9/O20flXQySf7CseEAyX3z0klO3CZXAiYv7+vro6+vL6NtpBNM2nkZkciM6QEMoLxe9MBAtsMYVjz5N9MSwCIzUzVseqZQXi86pYI/eXKeuHhP98rKynE9T/Iwc0eaC2CpQ86Hq0JMF5sQoym0k01Vad5XPSnDqJ1dXbiWLsV1yim47YSW51WvAmLf9Z4RLiK5Tj11XBOXADxij77q6OhgvT2UNTX5C8eS2ZMlOc6RRmBFOzpoOeccfG9+c2K+ibzmdNL/29/iv/tuyv/rv7IdjUiiHI60Ey2O+JgMT2yVUrjXrsX9u98llgUCASqeeILmDRtoLi0lu5dl04sf+ymHA2VPQiuEsCf+CgRwT9FEWyKLXK7Exfi45OOiePIXy2Lhr389aL34iJF4Unbuvn2JERZDJH3fpH6XKI8n7XwAccnzc8Uv3oV27sRqbU17vKi1pvsrX6HoAx8g/PLLDGzaxMD//i/mvHmUf/e7mLW19P/hD7jPOQfn8uVYra0En3kG99lnM/DPf1L0nveg7GR0ak6gIKWAUw1zETUbJAGcw5RSsb5oowiFQrg6OwlWVBCyJ5x7/PHHY3daFmYgQLSggEsvvXTYXnLxE41IYyMtGfQEmylUJMLCMfSWy3XK4xmyc84lhw4dYiYdEkgFsJhM8SvEybJdlTyS1OHqQmQifiEouWqutr6ezs99juaUhKq3uZmiujrMykpm2VUX8ZOGljPPxGcPNR9OvMVMIBAYMrHicJIvPser61taWtKum1whnCltWfT+9KcUf/CDQ+6bM2cOW7duHXUblj3yyXXKKWN+/lzkOvlkjt59d7bDEDmgqqqKnWvW4Ojr44S1ayHHijSSK4INpxMVjcoxoBC2WbNmYVgWDikQmHFUmgrgVIbfz7JvfQuIJX11JALRKI4FC4DsjMJxrVgBw7TrUkpR+v/+HwDmrFl4zjtvyEXo5FFJZnl5YgTIcKPP8oEkgHOcy+kcNmkbt3nzZopPPJGuU06JNZlOUvbssyz43e+o3L0bl8NB56c+RXjfPgrf/GacK1fiqKsDpzNxhUXbJz7JlSda60RbhdSrGz09PYnhwJZlJapt+vv7E32Ie3p6KEm5Eqi1JhgM4na7Y1dfurspLS0dNFN3T08PbrcbwzCwLIve3l7Ky8sHxdDV1UU0GsXn8+F2uxNxxuNobm5ODFs2TRPDMAgEArjdbkKhEKHGRopWrsz475HzXC7I4QSw3++nhNjw2lxObGUq/j6T6o/MlJeXJxIqq1evznI06fX+5Cf43va2QVeRp4PWOm0COHWfm0t92ePtKYQYi3gCWKWMBCn7ylcovOQSsKzEpB3O9nbcdhuXIdtpbiY6SguSkP19GBzlpCXZU/aIqrjOzk62bNmSuL148WIWLlzIkSNHmD9/fsbbjfPfcQc93/hG2gSwUiqjz3hk925Kv/pVfG94w5ifPxfF97fOmXQ8JsbF7XbjaW4m6vEwb+lSXC+8kO2QhhVvASHHgELERKNRSg8cyHYYYiq43Ykis3A4zIMPPggcm3zt+R/9KNELt/6666i1k74i90gCOMcVPfcczcNM9JDMDAYJVlVRkDokXSn02Wcz8PnPc9SungHoeOaZIduora8naJ/4aMtC9/ZilJQcG+qUZrh7ckVN8rD+eGWYUmpI8je+PN7rTimV6NmZXBGUWq2TLhFelqbHW3Kc8XYXycOc48OWvV4vYb8fNYOq2MKGQSSHW0DEZVqJlS/k4D8zRUVFdHR08KpXvQpvDg2FSdb99a9jzps37AQ7UyYcRhUWjnp1PZc4c6wyS+SHRAI4zTFF0Suv4OjvJ2L39Ha3t+O0RzYli+9z+3/3O8q+/OX0T6QUxcXFdHR0ZLyPDoVCiarhuMceeyzxc1lZWaLqdzzJXyDxGdeWNSQJninl9eKc5AnocsGsP/852yGILFNK0b9wISSdJ+Qq5XSCtIAQIqGjowOXPY+QmFmSK4DvueceAJx2UQ/AmhtuSPy8fJTiRZFdkgDOcYbfn1HfTMPv58KrrqLtT3/ioN0fD8DR14d64gkG7H7A3quvpuLWWwc9NtrSQvPppw+aHbnRvmoz99ChGd3nNLhlC8UzpB8tQMCycKSZXC/XzJSh41IBPDbx1ynX9ymB++9Hud0EHngA95ln0v+Xv2BFIjSk6auezJw3j+jhw2N6Lt9111H2zW+i/X6MkpLEKIx8IAlgMR7x4dLD7QfKn3ySVntyr4F589JvxP6eq3n00RGfK175O5DhhdHR5jVYtmxZRtsZSedNN+G55BJ0X1+id9xYWV1dONPM55DPjocJ2kRm5s6dmxdzBsR7AEsLCCHETBc1TSIp85TMvuMOei67jOXf+x5N9kXp0m98A99//Ec2QhQZkgRwjnN0dGBZFocOHWL79u1cdNFFQ5JnXq+XgmgUR1kZBRdfPOg+I6mabLiDa7OmhsJ3vpO+3/xmyH2N46xwEdlRVFFBoKVlUDuOXDRaW5N8EU9gSAI4M/HXKZffm77rrqP/j39k4O9/B6D/f/4n48eONfkL0P/HP1L69a+jg0GM0tK0CeCysjI6OztzLuGaa/GI/GBZFkSjGMO8f+b+85+0XnopZl8f3jS9d3u+9z0cixcD4BjhGEUpRU1VFc3NzRmPOknu9bthw4ZBE5xMRvuVoN3f13vZZVgdHUNmss5Uzw9/SGXKJCtCzBQ+nw/y4LjKcDqlBYQQSQzDwCXHhjPSQCiEcjoTF7xKn3uOiqefpuKeezDsyX3d69dT+KY3ZTNMkQFJAOe4vje9CaJRtm/fDsCOHTs444wzBq3j9/sJ9/XFZkZ0udi4cSObNm0CQEWjlP/tb3SO8mEs/eIXKf3iFxO3I42NGD4fTSefPMm/UW4xa2uzHcKkchQWYoRCRKPRnE6y5XoFaKYkATw2+VABbCT1G02+aNbU1MScOXMy3k66nunptL35zTQuWEDNE0/EkkFpeniHknpu5ZKZciFHTC/LsjDCYVSa94/67GfRX/0qACd/6lPDbySDfW7oxRehqQnOOy/jCr0DSb0LlVLMnTuXxsbGSUn+hl58kYF//IOij34Uo6KCaGdnYmKUsYrs3Ys5XHW0EHkutG1bfkxw6HBgSAJYiATTNAe1cxQzh+VwoCIRnnvuOYxAgIX2RWiP3Rar8g9/wL1+fTZDFBmSBHCuKyjADASI2lW/qb3pEr307IOPyL59hHbs4KKLLqL3fe/DefLJFJx2GgW7d4/paR1z5wIyJC/ftHR2UhoMEgwGpTpvGkgCeGzyIQHMJMWW6e/oXr+e4KOPooNBVFFR2h7A5557Lvfccw8Xp4zwyLZ4b/VZs2ZlORKRT1pbWzHCYUiTAPZddhl9X/0qhj3MMFhdPWSd4k98Ah2JYI5yQcbq6YGODjjvvIz20UeOHBmy7NRTT+XUU08d9bHDCTz+ONGmJgpe9zpar7oKgMo//jE24eMo7SZGUvSRjyQm7xVipnGfcQbBpN7buUrZCeCItIAQx4lwOIzD4Rj2GNeyrNw+xhfjVjl3Lu0NDfT09FCeNFlu/O/tOffcbIUmxkgSwDmuMxgclAD2p/Re8fv9zNq8mRq7Gbf/jjvw33EHc/fvp/PRR/FO4MRF5B/L5cIIh4lEItkOZVjJE/LlO0kAj81ovT9zhVlby+xR+v1OlvgQdh0KYRQXJ2bYTeZ0OielAnGyxf+OuTzaQOQen89HXySCI80ET76KCvoAR38/AMWve92QdTznnUdo61aKb7ppxOdRDgfYF1QyqQB+Jmly3CuvvHLU9YcTn1chWXyCXaOqCs/69YR37ybc1DTu55isC1VC5KLgo49ilJdnO4zRORworeUYUBwXenp6ePjhh4HhWyJJAnjm8hQVocJhBgYGWPKPf2Q7HDEBctaW4wpnzRrUxzfVgw8+SKSwkKaUHXHjCSdMdWgiB9XMn4+RJoGUKwylqLj//myHMWkkATw2eVEBDNOW/AUwKytjP4RCGIWFeTUJnFIKpZS8/8WYmKaJikYx0iSAnUVFAFx40UUAONrbh6yjCgqItrenvVgyiMMBe/YAY99HZzKEVYdCtJx//rHbwSBN69bR8+MfD1l34M9/pvL225nz7LNA7HfQKRf0hRAx3quvxsyDkSXK4cCIRuU7UBwXHnnkkRHv1/bFEPcrr0xTRGI6mQUFsdFbgBEOU7ljB3MPHcpyVGI8JAGc43yVlYmEngqHWWxPfAJwv51I0w4H3Xav3jkvvYT3mmsS6+ju7ukLVmRdgd2EPTjCRYNssSwLAgH6X/vabIcyaSQBPDb5kgCeTu4zzsB9zjlovx+jrCxtC4hcJglgMVbRaBQViWCO0EO61R5K6Fq3bsh9qrCQyMGDYLfAGo5jwQIYGABGrwCOJm3r3AyHMYaef57IgQNYAwNYXV00n3km1pEj9P/2twBU/PKX1NbXM9dOQruTtqu8XkkACzGMwje/mdIvfSnbYYzOngQu0x7jIjcEAgE2bdrEgP39IDIz2rGe1hq0Jmz3hBUzi2lZiRHnLZdfjqe4WM7n8pQkgHOcUViYqAA+5aMfHTTUNmBXihnBIOdddlns56IirI4OAMzZswkmDWkUM1+3nfBvSTNzerZFIhGMQABlJ6lnAkkAj018YjQ5YBgs+PTT9P761xizZuVVBTBIAliMXTQaxYhE0k4Cl8p37bVDlpmVlfj/9S+cy5aN+NjSL3858fNoCZr4BItlZWWUlpaOGheQiP/IJZfQdPLJWEnVynO2b8dzySWJ9Wrr6wft9wyfj57vfz9xuytpEt7R6FAIq7Mz4/WFEFNDmaa0gMhD8QKqBx54IMuR5JfypLYsra2tQ+63LAsVDkOa0T0i/5lVVZgDAxCN4tu/P9vhiAmQBHCO6woGYwlguzol+SBj0aJFAFT39OCMDyMmlkwAiDY3E965cxqjFdlWW1sL5GZPzkgkghGJYHi92Q5l0kgCeGziCWAxmHI6CdxzD0ZZGdiJqHyhlJLqJzEmzc3NsQrgcZ4kKnuCU6OsbOT1kvY1o+2ju7q6AOgcQ2LVGhig6CMfIXr4cGJZ+W234bvuOozS0hH3dcrjoeA//oO2t76Vhro6+n71Kxrq6jJ73p6ejJLnQoipJxdB84v8rcZvrj1BPKR/HS3LwgwECOTgOaiYOGdNDe1nn41jYABHX1+2wxETMHNmY5qhiqur6XvpJRx9fUR8vkEn2vGKlRKXC2VPEgdQcOWVmLW1OJcvn1HVlmJ0DocDtKa+vp6TTjop2+EMEg6HcbW3Y9oV6jOBJIDHRiaHSG/url001NVhlpfn3XtJTn7FeKhIJJHIHc6sv/99xPuN4uJRn8f5vvcBo1cAh+xWWxUVFaNuM077/bjXraPXvl1bXw9AQYYTNqrCQoL2hDpjof1+nEuXjvlxQojJl62LoP39/QSDQV5++WXmzJnDjh07Mnrc3LlzOeWUU47L0ViWZXHnnXdmO4y8ldwqKZqmBVM4HMYIheiXooAZKT6JuxEM0n7ZZSzJcjxi/CQBnOPmL19Oyz33xBJnfn/iRFvbSb6S558n+Je/oL773cRjyn/wg2yFK7LM5/OBfTD69NNPc8YZZ7B79246OjqYN28eTqeTqqqqQY+JV2W2tbUxMDCAZVmEw2ECgQDRaJSSkpJB68cTPskHjt3d3RiGgdfrRWtNNBql3R4OW1lZidPpxO/3U/TKK3DWWVP/QkyT+GsgFZCZ0VrnZHV6Lqh58klUSQnkWTJVEsBiPFQ0OmwV69zdu2lcuhTDnhAunYrf/Aajunr057H3N6O9R+P78Pnz54+6zcRjOjpwrV2L88QTCb/8csaPS0iq9p/15z/T+YlPZPQwPTCAmkEjaYTIZ+NNAFuWRU9PD3v37qW5uRmItaBxuVxUVFSw0x7Befnll+NwOOjr6+Ohhx5Ku62OMRRWNDY20tjYmLhdXl7O+vXreeyxx4aMgKipqcFpX6grKSlBa81LL73EqaeeSlFREcUZXITLJQ0NDdkOIa8lJ32HmyjVCIUoTjnPFDNDPAFsDgwQdLmyHI2YCEkA5zhVUIA7GiUQjTIwb17iIOOOO+4A4IRf/jKb4Ykc4/F4Egmk1tZWNm/eTH9/PwBtbW0ZbaO9vX1MVVBjMauwkCPV1Syakq1PP6kAHpu8aAGRpb+lIz60LtdfnxSGYcj7X4yZEQ7DMCcQym4NMVKVq/fiizN6nkwv0u3atQsY2wSqnTfdxJwXX6TqnnvGtV+LHDpEyS230H3LLThXrUIVF6MjEZRj5ENza2AAVVAw5ucTQkw+xdiLAPr6+njwwQeHLI8nYI8cOZJYdo896dJU6ejoYNOmTWnvS55P5HBSq5utW7eO+/lSzzGcTie1tbUUFBRgmibbt28f9rGlpaWsWbMGj8dDU1MTL7zwwrjjEGOXnAAOpJmvwrIsjFAId0rhkJgZ4qOMHb29FMyene1wxARIAjjHqYICTpg9m90HDqBNc8iJdvsZZ3CSPeO0EM6UIbXx5G+uKNq1i5IPfzjbYUwaI8PqMhGT6wngTJIvUy3w4IOU3HhjVmMYC6kAFmPl8/lww4j94IszrIYdzVgv0qWOeBlJ0Uc+gjGBE13/HXfgvfRS5h46hFIK57JlWEePYtbUjPg4HQhIBbAQOWI8FcDpkr9jtWzZMqqrq3G5XOzfv5/y8nJmZ5CU6evro76+nq6ursRIvWwKh8McOHAgo3W7urom5bVbv349W7Zsyenj0Vy0d+/exM/bt28fMmImngCW76eZKV4B7Ojvp1NGvuY1SQDnOOVwELr/fupCIdoqKoYcZDhqazGS+v8KsaS6mqqbbmL7d74TWxCNYoTDWKNNuKP1lFc/DtTVMWsGVS5JBfDY5HoPYB0KobI8rMl9+ulZff6xkkngxHj4DhxAj/C+Kb7hhkl5HqUUaD3qezQ+p0LhNM6bUH7bbZhz5iT2ie4zz0RnUIEc3rkTR4YTxgkhplYoFCIcDk/oAvdZZ51FV1cXZWVlKKXwer04nU56enp4/PHHWbt2LVVVVWitcTgcQ55n5cqVGT9XYWEhK1asSNwOBoPcd999zJo1izPPPHPYx2l7P9rT08P+/ftpamoa+y+aI8rLyyksLBxT6wwBRUVF9Pb2Dnt/NBpFRSIY0h5gRooXmZU99xwDCxZkNxgxIZIAzgPhnTtjJzDr1w9KNBnBIPMWzZTB9GKyDPzzn5iBAGuuv57nb7uNNTlScdt3wgn0Ll8+bN+ofCQJ4LHJ9QpgQqFhh6VPFyPDYeC5QiqAxVhZlkW4pgZziloNDeJ0gmVx+PDhjCZGTR1FM6IJ7stSJ4tTXi86zbDaVEZZGY7Fiyf03EKIyREfFn/o0CEWjDEpsjFpH1BZWTnk/vLy8kHrTAW3253RcyilME2TsrIy1q5dy9q1a8f1fE1NTcyZM2fI8kOHDuF0Omlra2PJkiUUpBSLRKNR7rrrrkHLli9fzpIlmU1FFW9zcdFFFwHH+ibn/HFpDikuLh4xATwwMICKRukeGJjGqMR0iY967Vu8GJ1mfyXyR36cYR7v4hUsbvegipnVN95I9G1vy2JgIhfNeeEFGuzqoFNvvplcSc0U7t9PweHDhG+5JduhTBpJAI9Nrk8Cp4PBrFcAG8XFWD09mOXlWY0jU1IBLMZKa40ZDid6/U4lw+XCiESIZnjhcSz7p8iePeMNKy3l8WD19Iy6XudHP8rsZ5+d1OcWQkxMV1dXRuuFQqGpDSRPxdsJpEsOQ2zSsYkkwxctWkRjY2Nssuwk0Wg0MbRdjGy0Yz2n04mKRCjOk+NXMQ5KYYRCrBznBSCRG2SPlw/sHa7lcoHWsSSKXSWi5SqbSGPuoUM0zp+P7u5mzksvjTibeqrhrs5PVENdHYHqairGEEuukwTw2OR6pYUOhVBud1ZjUCUlWN3deZMA7uvry3YIIs9YloUxTQlgh8eDSpq4Jp3xJmT0KNsds2iUyL59uNetG3E1VVCAIdU3QuQG+5gm09Ft0nYgO1asWDGo9UVcJBKRBHCGoqN85x05cgQVjdLj909TRCIbZt91F4GPfzzbYYgJOG73eH19fTzyyCOcd955QGyn9dJLL7FixQpq7Ak4Hn300URfuJGYpsn5558PQFtbGy+++CInnnhiohn/448/ntHM0kopLrzwQgCOHj3K9u3bWb58eeL+tvZ2DjzzDK2trezdsoUVDgc7Tz6Z0ObNQ7YVH+LS3t7OCy+8wNKlS6mtrQXgySefxJ/hzvmCCy7AMAw6OjrYtm0bS5YsYd68eQA89dRTDGSYgD7//PMxTZOuri62bt3K4sWLqbOrVJ955pmMkwjnnXceDoeDnp4enn32WU444YTEkKstW7aMODQl2bnnnovT6aS3t5ctW7awcOFCFi5cCMCzzz5LTwZVOBCbSMDtdtPX18czzzzDggULOOGEE4DYLLmZVgScffbZeDwe+vv7efrpp6mrq2OxPcTz+eefT8wMPJqzzjoLr9dLIBBg9y9/yby6ukTy94UXXshowoejR49y1VVX4fP5CAQCPPHEE9TW1rLUnpF9+/btHD16NKN4Tj/9dAoLCwkGgxz89KeZ+5e/JK6+v/jii7S1tWW0nXXr1lFUVEQ4HObRRx9l9uzZnHjiiQC89NJLg2ZMHslpp51GcXExkUiERx55hJqamsQB4c6dOwfNeDySU089ldLSUizL4khLC8E9ezj55JMBePnll2lubs5oO6eccgrl5eVYlsVDDz3ErFmzEsOUd+3alXGPtdWrVydmVd68eTOVlZWJeHbv3k1DQ0NG2zn55JMTwxAffPBBysvLWb16NQB79uwZNAv0SE466SRmzZoFwMMPP0xxcTFr1qxBa01zczOb0+yz0lm5ciXV1dUAPPLIIxQWFnLqqacCsH//fg4ePJjRdlL3616vl9NOOw2AAwcOJCYgcTY34zl4kN408R09epRzzz130H7d5XKxzk7WHDx4kP3792cUz/LlyxMXWZ544gkcDgen271/2/1+Dj/4IMEMJkVJ3a8rpRI9/A4fPsyeDCsUU/frWmvOOussABoaGti9e/ewj43Pwu3z+Ybs1yORCGeffTYQu7C0a9eujOJJ3a+HQiHWr18PQHNzMy+//HJG20ndr/v9fs4991wgNrv5zp07M9pO6n69r69vyLFDJlL36z09PUOOHTIxb968xLDXF154gY6OjiHHDplIt19PPXbIhMPhSLyf4/v11GOHZFu3bsU4fJi2xx4b1EYh3X499dghE8n79ZajR9l54AArzzkHIHHskKyhoYH6+nqAQdVh1dXVid6a8f168rFDo9vN9gz2Zen266nHDgCuI0dwNTXRN8w24/v1wve+lz1799LQ0DDk2CETFRUVQ/br8WMHv9/Pk08+mdF2ysrKWLNmDRCbHKi+vp4zzjhj0LFDJkpLS4fs15OPHR5//PGMtlNcXDxkv5567JCJoqKiIfv11GOHTPj9/sTnor6+nr179yaOHaLRKA8//HBG2ykoKBiyX089dsiE1+sdsl9PPXbIhMfjGbJfTz12yOSiuNvtHrJfTz12GC3hBLGqw9T9euqxQyQSGXU7DodjXOeEAy0tvPDCCzQ2NtLW1jbqOeHTTz/Niy++yNy5c0d8zYc7J0w+dghk0DIGcuuc8OjRo7z2ta/N+jnh4cOH6ejowDRNLrnkkhl9Thjfr6ceO2Q6CWB8vz4wMMCOHTuoqqqiqqoKGHxO2NTUhHngAM6KCrrSvLdT9+tz5sxJ5DlmwjlhfL+e7tghE9XV1cyZMyenzwkBAtXVBIPBjL8zhjsnhGPHDpmY7nPC0aTm+qbinDB+7JCJdOeEw8ndsbgioTbpg9HR0UEgEMA7MMATGzcSkolAxHAcDsihfru6vByzvz/bYUyqXK5mzUW53irACIXQ2Z68IhTClUeTq7izXDEt8k8iOTQd+0+nkwKnc8QKr1yZzMhyuzFGKRbQoRD9v//9NEUkhMhUJklmIHEhNNPkm5gaXq8XGL2qVRxjWRaGYSSO5VMv9DgcDgzLwmm/tmLm0aZJ1+rVY5svQeQclY9Dl5VSB4FeIApEtNanKaXKgf8FFgAHgddrrYe9RHbLLbfoW/KoF2lDXR3NV15Jy1VXAVC8YweRoiIu/tCHshyZmGmmqgVEtLOT5tWrB13QyHfhcJhtN9yA4/3vT1zNFMO777778Hg8iSqbXBN87jl0Xx8eu3on2VR9LlKFtm0jcvjwkAmictVjjz1GX18fl19+ebZDEVky1s/GHXfcwQmbN7Piu9+dwqhi+v/8Zx7r6yNUWcnFF188ZGIhgHvuuYdwOIzD4eCKK67IeNvd3/kOJTfdNGmxRjs7Gfj73yl617uG3Gd1dzPwr3/R9dnP4r3mGip++MNJe14xNabrO0Nk15YPfICWq66itLQ0UYk8kvhkZJmuP9Pkyudiz5497Nq1i3POOYeysrJsh5MXHn74YUKhUKLyPPU79dChQzTdeisL3/UuauyKXJG5XPlsjKTnV78itHcvlV//erZDERl4//vf/9zPfvaz01KX53MF8IVa61O01vFf6tPAA1rrJcAD9u0Zo+A//gPTMBJfUoV79lAwg3qpipnPKClBzbCrwtIDeGxyfhI4v39a+pKOxCgtJZrhMLhcoJSS97/ImLbnMZiu0RPK6Uz0AD506FDadeLDupNbbmWDUVhINE01cvC552g66SS6PvtZAArf+tbpDk0IMYpMWgYmi7cqENkR79mcaeW2iFVLm6aJyx4pl/qetywLFYlgZHsknZgyZkkJhsw/lfdy90x87F4N/M7++XfANdkLZfKVf//7sdnW7ROZSFERKy++OMtRCZE5ZRjMfeWVbIcxqSQBPDY5PwlcIJD1BLAqLiaaYd+xXJA8HFCI0cTfK9O2H7BnJQdG7ZdZPoaJF62BAXp//OMJhZZKOZ30/+//Dlne9prXxO4vLsaYNQujuHhSn1cIMXFjnUxy7ty5UxSJyES8LZC0gMhcvAVEvF9z6rmP1hoViaAkATxjqYICrAznWxK5K18TwBq4Tyn1nFLqffayaq11vMt2C1CdndCmkMOBZV9t8+3fT1H1zPsVhcgn8SSGJMAyk/MJ4IGBrCeAjbIy+n7606zGMBaGYcgFEJGx6U4AGz4fhp2YGS3BWzSGUVXRI0co+uAHJxRbOg57Ao905rz4Ip5zzsEcYR0hRHaMtQI4l0dDHQ/iFcCSAM5cvAI4PvdDavW0ZVmoaFQqgGewmTaS93g1/KwYue0crXWjUqoKuF8pNWhqca21VkoNOSO1k8XvA7j++utzZuKPTA0EgzQcPEjE4aCssJDmPBomLPJHR0dHtkPIG1pr/AMD9LW15d3+JBva2toIh8M0NTVh2bOa5xp1772oNH/L6f5cNNbXo0aYuCpXHD16lKNHj9LY2JjTyX0xdcby2QiFQrS3tzMwMDAt+0w9MEBVURHPtbfz4IMPcumllw5ZJz4ZU6YzfgPow4ehupr+Sf4drDPPHPq6nHQSxi9+EZtJ/FOfoqW7G7q7J/V5xeSTY6njg39gILEPyWSfNpZ1Z6Jc+Vy0tbXR3t4uxy5j0NbWRlFREW63m/b2dhoaGgZVvjc3N6P7+mhtbycoifUxy5XPxkj0kiXwmc8ct/uvmSL3zy7T0Fo32v9vVUr9HTgdOKKUmq21blZKzQZa0zzu58DPITYJXK432k7VUlxMWXExltdLRVtbzjcKF/lL3luZayoowF1eLq9ZBsrLy6msrKQqFGI6mhwYs2ZhpVwoc55yCuFt23CuXIkOBgGIHDoE4TCudeuoGmHiiun6GzcAZdu2UXD11dPyfBPR1NSEZVnMnj1bKpqOY5l+NgKBABUVFRQWFk7L52lg61bU009TYU+gO3v27CEn+xUVFcDYPt+BQ4fQVVV4J/l3aPjVr6j5xCcw7Il1Qjt30qk11fL9kpfkuGDmaywoyHgf0tnZOa79zUyTC7+7y+Xi8OHDVFZW5kQ8+aCsrIzy8nLKy8upqKjA6/UOeu16enroLShgbm0txdKqaFzkvSimQ94lgJVSPsDQWvfaP18KfAn4F/B24Bv2//+ZvSinRigSSUxmUrR7d5ajEUIAaMOgNY96tmZTfBK4SFMThe98J6Vf/GK2Q8pJFT/7Gd3f/nZeJIDjSd94bzghRpJolzNNFVeOhQuhpiZxOxQKJYavwrEehqWlpRlvU0ciHH3DG/Becw3eNBXFE2UdPYph91gMv/ACRR/4wKQ/hxBikoyhBdKzzz47hYGIsYgfr0gLiMzFj/PirR86OzsH3R//PpWKaiFyWz6erVUDjymlXgCeAe7UWt9DLPF7iVJqD/Aq+/aMok0zkQB2nndelqMRQgCgFEp6AI8qfmA453WvI/zCCziWLMlyRLnLc+mlWHkyxDt+oH/33XezadOmLEcjct109wA2Z82iaOHCxO2BgQHq6+vZtGkTmzZtSpz8+3y+jLc58Pe/A1DyyU9ObrBA+Q9+QNQetRBpaqLzU5/CtXbtpD+PEGL6xY+D4lXAInukB/DYxL+7DcOgrKwMGNo3P3kdIUTuyrsKYK31fmB1muXtwMXTH9H08RQWoiwLw+8n/Mgj2Q5HCEGsAngsFSDHq+SJwrq//nWqH3ggi9HkNmWaWK1DuhjlpNQD/dbWVqqqqrIUjch1iRPEaUoAK5cLkiZneuyxxwbdf/jwYeBYMiATnTfdBIw8Ydt4WX4/0a1bca9dix4YiMUmySIhcpZzDBNeVVZW0tjYyAknnDCFEYlMSAJ4bJKTuy77Pe9Kee9LAliI/CCf0DwyEA6jIhG8DQ0ouz+cECK7CgoLcY0heXC8iieA+173OjwXXYRTKoBHFU0ZXpeLUg/022RyUjGC6a4Axk4AFxYWpr17x44dAPT19Q1abg0M4E9zkar/z38GoLa+fpIDjXHU1tL95S8DoPv7AVAez5Q8lxBi4urmzQOGJsPSKbDP3bxe75TGJDK3f//+bIeQF5KTu8Mlzy3LAq2lBYQQOU4SwHnEsltAOHt6KL3llmyHI4QADIeDSDA4qMJVDJU4MDRNKn/722yHk/MK3/lOjr7hDdkOY1SpB/rxoYFCpBM/YZyuE0TldKLDYU499dQR1ytIuahutbXR/s53DlkvXv07VdznnEPxxz4Wi6G3d0qfSwgxcfFkWCbffWF7NILDkXcDcGccp9MJxKqyxejiCeDe3t7E+c7BgwcHraO1BqWkAliIHCef0DyiHQ6MSITil1/GsWhRtsMRQgC9/f1gWQSDwWyHktO01mBZYB90i5EV3XAD4V27CG7dSuenP53tcIaVeqDvlL+vGEGiAni6ThAdDnQkMmRG8tSWD6lJAO33D7tJ74YNkxdfCmUYaPs1Cjz00JQ9jxBikiiFUiqjIoB4wkwSwNkXP3bxyAiLjMQv3kaj0US1e/JFj1AoRHNzMzC2lkpCiOknCeA8smrNGlQ0SsWTT+I65ZRshyOEINYDWGktCeBRaK0xwmFJAGfItBNSbddcg//++7MczfBSE8BSCS9GkhhG+uCD0/J88UpjpRQXXXQREEu+XHHFFYPWS71wEZ+Esf9vf0ssi9TX41yxgoof/3gqQ07o+/nPp+V5hBATk2kCOM7tdk9hNCIT8WMXSyZxzkj8/V1dXZ1I8Ca/j++9914ikQggPYCFyHXyCc0jBcXFnHPGGUBsWKMQIvtm1dSAZUnPq1ForVGRSKwnp8hI8Sc/CdgTWeWo1Pe9nEyJkSRaQFw8/XP2+nw+Nm7cyBVXXIFSalCVUmr/zrZrr6X4ppvov/32xLKWc84hvHPntMWrvF5qUiatE0LkHqXUqN998t2YW+JJSpkELjPJPYBHe+3kfEiI3CYJ4DyiXC50OEzh+96X7VCEEDbD4UBZVuLKt0hPa40RiUgF8BgUf+hDOBYvxn3WWdkOZViun/1s0G2pABYjSZww5sAJYvLJa7rWJUXXX49j/vzYui0tAMzZtWvK44onmZXHg6OubsqfTwgxfsowMBj9u6+1tXV6AhIZUXbrDknMZybdJHDy2gmRn6QJUT5xOtHt7UQbGrIdiRDCpkwTLEsOhEZhWRYqEkHJ0Mcxqdm8mY5PfCJxu/3978d/990AuE49ldDWrfje8haU203fr36FY8kSdCCAWVOD+7TTCO/bR+C++3Cfe25s/WeeQQeDGCUlKI+H8P79KIcDVViIY948IocOYZSVYZSWojweAg89hPJ6ibzyStr4nAAXXpi4LQlgMZJgMAg5+B5JrVgq+vCHUQ4H4d27Aej+7ncBMFImi5sKjhNOIHLwII6FC6f8uYQQE+R0YkSjox4Dxr8b59sXlUT2GYYhx+4ZSvTvtxPnhmFI9bQQeUoSwHlEOZ1EW1txr1+f7VCEEDblcKC0loPIUSRaQMjkJ2Nmzp6d+Dme/AUIbd0KMGiYemTPHgCihw8T2rIlsTz46KMEH310xOcJPf30hGOVz4EYyf79+1HRKFYO9AicNWsWbW1twNCJgPx33UXJxz9O+OWXabCrcKvuuGNa4lJeL72//nXi8y2EyF3K7caIRke9+NnU1ATIBHC5RGsto/cyFA6HB90eNgGcgxd4hRCDybdQHlEuF9bRozgWLcp2KEIIW7wFhCS+Rqa1RlkWSk5+xs4+oNaBAAC19fXH7goEYn2VtUaZZux1nsbh9fWf/zxYFtgJPakAFiMpKiqio7sbb3Hx9D3pMO/J5KRvclKm59ZbiezdG7thJwdmP/ssZlXV1MWYTGv6f/tbah55ZHqeTwgxbsrhwNQ64wRwZ2fndIQlMmBZFt32hJ9iZPFk78DAAACmaaZPAOdAeychxMiyX4IhMud0Em1vx5jOEychxIgMaQGRkXgCmKSJl8TYHLnqKjwpk2cpjwdlGLFWJEz/5Bs9pVFU0kmAfA7ESAoLC1GRCGZKxe2UGuYz0WL39U3V861vYc6bB0DRDTfgvuCC6Uv+AtaRIwCJGIQQOcw0Cfn99PT0ZLT6unXrpjggISZf/NiyrKwMGCEBLITIeZIAziPK7cZqbcUoKcl2KEIIm3K5YkOaJfE1Iq01WFYiUSkyF3r2WaJtbUT27MF71VXZDmeQ/37ds4MSwFIBLEYSjcYuGExrAngYww39LXjta5n9+OMAlHziE8z6/e+nMyxC27fjveYa2VcKkQeU04m29yXxKt+RuFyuqQ5JiEmXPAkcxCqB+/r6ADnuEyLfyFjcPGIUFhJ86imKP/3pbIcihLAptxvV1SUJ4FFYloXSWlpAjIP7rLMIt8WqAlUunjxGwkAsoZePn4NNmzZlO4QRbdiwYdoru6dKJBJBRaMYTme2Q6Guro5Dhw4NvSPL/YnDO3fie+tbsxqDECJDppm4CPrcc88xZ86cLAckxioajWLKBbcRpSaAk917772Jn0tLS6crJCHEOEkFcB5RPh9WZydmdXW2QxFC2Ay3GyMSkaFQo9BaQzQqVW0jiOoIn6q/DEsPTqJG+3r5QuFNVPzPHyi4+uosRZeeYSm0dWxykHyrBEmd2CQX3TFNk49Nh+bmZpRlYeTAhYzhLlaYc+dOcySDFb7znZiSRBIiLyh7HoiRHD58eJqiEeMRr2QVwxsuARwMBgcdR1VNY7skIcT4SClWHlF2xYxRUJDlSIQQcYbbjZIE8KikB/DoeqLtAHzm8BUAXFz8ZrYNbKb9Lc0A3FL3Fagf9uHZYQD62MF/vlUAh0KhbIcwqrq6umyHMCniFwdUNJoTIwHmzZuXNjETn2wxW0q/+MVh7/tU/WV8s+7eYe8XQkwzex6IkQSyvE8R6TkcDiKRCK+88gqnn356tsPJafFju3iltNvtJhgMDjrmO+uss2DPnqzEJ4TIXPaPwMWYzPrb37IdghAiSU8ggBGJ8PLLL7N48eJsh5OztNZ50QIibAVxKFdWhtw3hw5wcfGbebb/PrqjbTzQ84e06ykM1hVezjN9dzHHuYhis4JdgWcod8wmZPkZsHooMWfRHT1KrWspXdFWzi58NZooYR1mb+B5FIoBq5eeaDtLvWspNirosdo5Ej7EWt8l9EY72BPYSqFRxr7gNlzKw8kF57HLvwVTOTircAM90XYGdu4E61gSNd8qgOMnL3V1dSxevBifz4dlT+royPJ7tb29nSeeeIL6+nqqqqqYPXt2VuOZqOQEMDmwH6ioqOC0004bNGQ12tJC309/SunNN2cvsBTP9N3DWt+rMFXsNTsU3Ml894osRyWEAMDhGNQHP5140uzMM8+cjohEhlatWsW2bduorKzMdig5L17kEn8vz507l/379w8qfqmsrKQ7K9EJIcYi+0fgYkzcp52W7RCEEEm004kaZjIhcUy+tID4XMPVrCm4mDdWfnLan7sxvJe5rsVcWvo2AJpC+/hBywepcMzhTec/RvULz+MsKEys/9ryj4zreS7j7ZMSL8D9LR8m7O8lGpsYOu8qgJOrWnw+HxAb4piuz910S+5J+Oyzz7Jx48YsRjNxd955J2BXAE9nD+ARLkqkJtX9mzdT9p3vTHVEGemLdvFs/33c3fUr+qIdnOg9C4AfH/mYVAELkSOUw8Gak0/myfZ2PMNMbtnY2AiA1+udztDEKArsEbX5duE6G+KTpsYvjMf/nw9ttIQQg2X/DEcIIfKYt7QUwx5GLgeRw0tMApfjCeBZjloKzCLCOsTTfXfxVO/w/VctPbTqx9IWlo4STXNfRIdGfI+4lJvFnlMSt2c7T6DCMZvzi6+FYBCH1ze2X2YaOCtriLqOHUrk22egp6cHyM0ejTN1UppcbQWjtabr05/GKCnJdigA9EY72Nz9RwAUJt9v+QAbSz/Aab5LsxyZECLBNCkuKMDpdA6b4O3q6gJiw+ZF7ognMSNSxDGqPXZrh/hxSfy1k/7JQuQfqQAWQogJKK6pwbD7u23dupW1a9dmOaLcFO8BnOsJ4FUF62kOHeBzh49VW/6980exH6ao/+6ryz7IPzt/zAnuk2PJXptSihtn/wIDgyb7dq4xlAOtIsQjy7cK4HgF0MKFC7McyVCpCeBQKIQrByZPG494AgSIjQSYzgrgDD830aYmABzz509lNBl7tPdvBPUAAPd0/xqAtYWX8GhPrBVYf7Qbh3LiNmReCCGyRTmd6EgEwzBG/f5zTud+T4wqfky1e/duli1bluVocldygjxe5R4/Pmlvj81dkQujpoQQmZEEsBBCTEBBZSWujg4AmpqaxpQAjtgnDRA7EM00wae1HrRufDtj2cZ001qDZeV8D2ADB7NdC9kVeIavzrsD0/6abGg6TPXsKrsPp2LA6sajfIQJoVA4cKLRmMpJSAdwKw9RHaHX6sSlPHiMAgwcKBQWFhZR0JrPNVzNPzt/DEBID50oxqFy+4TR5fKCdazrWyAQYGBgIJFYzXXxE/ZcTKymnlD19fVRXl6epWgm5oknnkj8bGqdkxXAVns75bfdhjPLiYC+aBf3d/83z/XfD8BZhRt5sm8Try//OF6jkD2BrTxQf6w/uLSDECKLTBOiUYLBIMFgMO0qpaWl+P3+aQ5MjCbbff7zxd133534ObUCuMM+/8nXYxMhjkey5xNCiAkwCwtx21fA4zZt2pSlaGJysVeoZVl5UQGsUDzY87/A4OSrqRy4jGP9/YrM2MGuk6FDOr3K7iWrTMqNmiH3m/Z/KHhv1Te5p+s3eI1CdgeeHTausm9/e3y/0BRzOtxYOkL8r9rU1ERTU1NOvgfTibesyMXqldST01y9uJOJ2bNn09DQAIAOh6e3AjhDgQcewLlyZbbD4MuNbxh0++qy/yRoDXCK7yIAziy8ivqOlwE4u/DqaY9PCHGMcjjQSRWS4XB4SKVvOByWZGMOSteyIxAIEIlEKCwsTPOI3BW/mJ06gW0kEqGnp4fS0lJCoRChUAifz5dRi6lgMMh9992X9r744/v7+wEoLi5GWxYqB4+lhBCDybeREEJMgDIMPEuXJm4HAkOrOKfbSy+9xMocSGQka2trA8uiN0+qYD5cc+u0PM9izyl8qOYHBC1/2grgON/rXz8t8YyVw+kGHaWmpoaWlpbE8vhFkJUrV9Lb28uiRYtwu928+OKLlJSU4PP52L59O2vWrCESiRCNRiksLCQQCODz+XA6nUQiEfr6+pg1axYQS9JqrfH7/Xg8HkzTHFQNHwwGcblcWJaF3+/H7XZjGEbi5Dv5pCj+uPgM1rmYAE49QXvssccSP/t8vsSJF8SGFo82GUtJSQmBQADDMIhGo5SVlREKhfD7/ViWRcjuZT5W7e3tVFRUZLy+sizIwWSIUVaG69RTsxqDpY8NIb+g+PU81PN/GMrkDUmTUq4tvIRZznn8qf0bFJpl2QhTCBFnmpBU+dvT0zNkfxgOh/NmVMzxJPmialdXF48++mji9gUXXEBRUdGUPXcwGCQcDg9KNGutCQaDHDlyhIKCAl588cVB3/O5JH485Xa7CQaDsQlVI5Gc/G4XQgwmn1IhhJigqupqdtk/b926NauxADk51LCoqIhey6IoRyZYGsmXav+B25je2brdhhc3+TdDuGE6WbXqROpWrx6UAI576aWXAKivP9ZAOT4jOsBTTz019UFmIBera0eKKfWkMJOZuLu7uwfdPnLkyPgCm6AirzcnW8FYvb0YxcVZjSGgY3/XeFuHh3r+L+16TuWiN9pJv9Wd9n4hxPRQDgehcBRLKwyleeKJJ1i4cCGrVq1KrBMKhWQCuByXnPwFeOihhzjnnHMoLS1Faz3sReK2tracOY6ZSueee+6gZHX8AnW87YnH44lVwufgxXQhxGC5dwQuhBB5rD2pHcR0D4Pfv38/L7300uAJl3KEYRgoy8KZBydB0538zWem4SQa6c/JCtqxyPf488W6devwGUZOVgnpUAiV5V7QISuzESSFZikhHeDx3n9wddl/TnFUQohhmSaf338OAKdXPEahs48DBw4kEsDxi3W9vb1ZC1GMT/Kom+NZunOZ1JYmHo8H3dWFkaathhAit+TeEbgQQuQbramtrU30uARYv379tIcRH8Lt9/uHTBSXbZZl5cUkcGJsDNOJZUWGvNeSTxi01nR3dxMMBhkYGMDpdNLS0kJzczOmaRKNRvF4PCxcuJDm5ma6urooLi6mqKiIaDSaqCyePXs25eXlibYNPp+P7u5uTNOks7OT1tZWIHYiEo1GcTgcuFwuuru7qaioIBwO09PTk/b3yKQfXrY0++dQ5WnhvHPOSky0Ev98W5aV8eSP8X7HyY9LNt79RVNTE3PmzElsPxqNopTCMAwsy6K9vZ1IJEJVVRUOh4N+S+fkfsB/552U3HRTVmO4r/t3nO67InH7IzU/TrtegREbSXFR8ZumJS4hxDCS9mXPtJ/DRTX3DLp78+bN0x2RGIMVK1awc+fOxO2NGzdmfR6PdBYsWIDL5WL+/Pl4PJ7RH5ABrTWWZQ1pp5WJ1GMmwzAINTUR3rNnUmITQkyd3DsCF0KIPBSfCTcuGzPiLl26lD32wdfOnTtzqg9wfBI4IwcnfxLjZ5hOwtHwiBW0SilKS0sHLautrU277uLFi8f0/HPmzBnT+qniJ3q5nAB+uftkXu4+iWvKj1Wnxk/UxlK5nHxyNxUVz/HtJ1cGmaZJVVVV4rbWms+1XMaXlx4m1/YE3g0bsh0CPqOEFd6zErfnuBalXc9UJh+r+RnbBx6ZrtCEEGl0RWKjmv7ftSG+/GcXWoNS6SeDE7ln4cKFiQTw+eefP+7tnHDCCSilqKmpoaCgALfbTSQSyen3gFIqcewz1gvAaSc1VArXmjWTEZoQYgpJAlgIISbKrnbLtuQY9u/fT2lpKVu3bkUpxbnnnksgEKChoQGn00l1dTU9PT0MDAzgcDioq6sjEonQ1dWF1+vl4MGDtLW14XK5KC0tJRAIUF1dDZCYGMPhcFBYWIhpmgwMDNDW1obX68Xj8dDf309VVRXbt2/H7/fT399PudaYWR5iLSaXaToJplQAL1y4MIsRjU8uJ4AX+PZiOUqB2dkOZUL6Ahq7SJi/7angbcum9vlua/ko19d8P/MHxIPLkp5IOy7loc59Ykbr17gWsNP/BBEdwqFkvypENhwNxaoxiwvdLCzczXMdZzK3oJ6WlhbmzZuXWC8fvxePB4ZhDGlxsHHjRsLhMPv376e1tZVzzz2XXbt2ccIJJ9DS0sKsWbPw2q0OLMsa9vg/l5O/E5UuAawHBjDt8wQhRO6SBLAQQkyC888/nzvvvBOAq666KmtxzJ8/n0OHDgHHJqTTWvPII4MrxeLrxO3fvz/t9kKhUGJo/XDD5zPV6F1OddBDLs9br8luEijfGKaLqDV4ArK0lSE5LpcTwD3hUqLRQurbLArciq4+TWmhwjRgb5NmfpUiEgWHCYGwpncANOB2QjQKLieU+hQFbohEIWKBxxlbx1AQjsTW6fNDoRc6+6DIC/4gdPVrXA6FRmNZsXULvQqloK1bU16keKnBjeHVFHnBNKA/AJ6kfKSl4VCr5lf3RXnXJSYnO+opdFdO+etWH3p50O1QRBOJQmO7Zsmc7F+wS3XbkY/SFW3lktK3ZvyYLX33EtZhLit9+xRGJoQYjlaxfYlpmjT75xKIFlAeOcq2bdsoSZr0dqyjW0R2OZ1Oli1bxrJlsSuVy5cvB6Curm7QerlQ/JENyb+30+lEh8P0/8//4Hvzm7MYlRAiE/l3liaEEDkoXRVBNqxatWpIcjdXPDn7TTz5NHzv5GxHMjxF7vRNzgfxHsDJcjmZOpxcjrnY2cXB/kq+949otkMZRjF3vxAZfTXg1/dHWWS48FjT93q3GuUUa82nfnMsxkvXaO573gLge++NVWlFlEnU0kQtcDli+4Edhyya2jXrVxgUuMffJzkTDjX2arHXVdzIz1s/KQlgIbIkjIP/LHgApS5nbkE9+3qXY6jYvvrhhx9OrDdZfVuFyAXJ34XhcBjd38/AX/9K4bvelcWohBCZkASwEELMIIZhsGTJkkQv4BNPPJHi4mJefvllZs+eTW1tLV6vF6UUPT099Pb2snXrVpYvX05paSler5d9+/ZRX1/PsmXLeOWVVwZtf926dZSVleFyubAsi7a2Np5//nkuueSSQUm0QCBAV1cXbrcbt9vN5s2bKQk0EyqqybkJ6sT4maYLKzq4AnjXrl0sWbIkSxGNTy4ngAHeeU4Lq5bXYiiV9vMTX5Z8X+p6I33uLK0Tlz6GW2e4x8cngYuvExdfNxyJ1dXvboxVAa+gnt2BqasA3tr/ACd5zwFgb+B5fux7M4vuiCVkPvlaB/6Q5kebjiXTWzo1uxst/l50PfwqfSL77udiyeKbX+/AYUKhJ1ZxPZn7sb5o15gfc4I7h6+mCXEciGDiiAYB2HhWMc9vu5+D/SdkOSohppe2J6FW0uZNiJwnCWAhhJhhli9fnhiuFpc8EVNccXExxcXFzJ07d9Dy1atXs3r1aiA2sdxwTNOkpqaGK664Ysh9Xq830SMNYj3VjF88xb/Ds7nxlxHec6nJyvm5N3ROWkCMjeFwYenBlanr1q3LUjTjl+ttK05cXINhJxvTJR1VmvtS1xspWWlkkMjMJNmZbh2nXU27ar4Copxk7cVfMfkTxfzkyI2c6nsV93f/Ny2hAwA81XcnsIp9LZpTFylmlytAcdoSizedb/KV/43wzb8MX718xlLFG8938Pcnozyyw+Jr/3ds3XNWGLx2/eRdOFjsWUNTeN+YHqOU4sLiN/LHo9/gdeUfw2m4Jy0eIcToIpg4o7Hk1/z585k/fz43/9bPIvbgcrkIhUKccsop2Q1SiClwwQUX8NBDD7FhwwaijY0AaMvKclRCiNHk9hmPEEKIGUNbgAFnLlf88r4oK+ZZGAa8dEgzqwRmlys8zljP0O0HNWcsM2g4qpldptiyxyKUkqdR6ti8TasXKl44ELtx0ckGTR0alwN8HmX3JdX4Q9Dr15T4FMEwOE1o6tD0DMS2Mb9KsWL8k0Afl0zTRVTH/jCnnnoqkUiEmpqaLEeVuRUrVnDw4MGcnaxl48aN3LVlZs0m74gEUI7Jv/gTsgIErH7cyktr5DAwuCK50HssOf3mC2KHv//vjU4+9otYBfuNfb9m3sfen3hMcjL7NWeZXLHW4ObfRVg8R7GnSbNljzVpCeCojrDD/xh1rswmgEtmYLJt4EEuKXkrlcbc0R8ghJg0EW1gRoKDlvnDDq7asCGjC2tC5KuioqJE67t4BbBMAidE7pMEsBBCiGkR1fBfb46gPB6e2hVh5+FjyZnWbmjtHlx9+8iOWCXB/pb0VblJuZ1E8hdg8/bkCoShj21sT7+9Q62ahcG0d4lhGE4XlhXh6Dvegd68mfn19dkOaUwWLVrEokWLsh3GiNQMm2TGiIRATe7v1BI6SG+0k7u6fgnA0UgjZWY1RyONiXVec1b6ZO1pSxTP7tEU7N8BDF/p7HEpvmv3Cw6ENH95fPJ6Mt98+CpOLbiYN1R+ctzb6Le6qUQSwEJMp2DUwP/Nr8F735JYVlYID79oceHJud1aSIhJYyeAjYKCLAcihBiNJICFEEJMD60xHSbKUHznPY6cq4558aDFK7k6z1aOMkwnlo4QeOghjDRtRoQYIhymsdOY1F7gz/bfS6/VkbjtM0rwmSU0hHZTGe3gqFk+7GPffIGDNyw6TLDk3Iyfz+NSVBZPPHatNXd2/QKAEsesCW2rPriL+e4VE45JCJG5sOmm/F1vGbTs3Zc6eHaPDIUXxw8djFVPKJnsUIicJwlgIYQQ08OywJ5sK9eSvwBeF4SHbwcq0jAdbiwrQsnNNxNtacl2ODNS7n1Sxu916w24BxZUx9qweCZpvphSM3bx4bNz/wevKuRzDVdTQWxiulXWPi56y/AJYIDwyy/HesqMwUS7hX+q/rLEz6cWXMzlpe8c13YUipMKzsWhZk6bECHyxWNFH+Asz+DWLZXFsYkiQxFNVx9Ulc6kvbgQQ8VbQAghct/MGlcohBAiZ2mtIYeHswfC0NEnk8CNhWk6sbDQ4XAiuS/EcNaviL1HjvZoWjrH/1mLWoMfayoHN8/5A8VmBU7DzVfn3YFht5nodBTiM8Ijb6+pCUdd3aTEMh7XVnx8Qo93Ky/7gy9OOA4hxNiEPUPbHrkccMcWi0/9JsLX/xwZ1ItciJnI6uvLdghCiAzl7pm4EELkCzm4z9hkDfmeClUlatBEUWJ0BiaWoSESQc2gicrE1FpzgsFE8qYf/1WEzqSLNX6rD59ZnLjtUE7OLNwAwGJXI9rvH3F7yuvFnDv2/rn9Ac3HfxUZVxL4ouLrEj8bE+iJrNEUmWXUOBeMextCiMmjlOKkBYprzzE5Y6miZ+TdjxB5L1pfT/Enx9/DXggxfSQBLIQQQgAOU2NJ274xMZSJpTQ6GpUKYJGxAg/4xzli9EhXLNn63N5jH9aIDuNQg/tJrPFdBECf24seGBhxm1ZfH8rnG1McTe2a5g7NyjrFx38V4d/bouw6bPGxX4S5c0uU/oDGH9Qcao0tS60CNDD5Zt29fLPu3jE9byqlDEBhaWlgLsR0Cuvhd2LvusTB2ScanLTA4MgERjsIkQ/Cr7yC77rrRl9RCJF10gNYCCEmKoerWkXmTNNCW3JddCwMjFgFsBBj4HUpWrvG975p6449bschzatOGX39BcWdoyaA9cAAxhgTwM0dmtvujLKgKrb/v3PLsYT0v7dZ/Hvb4KtJN/4y1mD862934HFN3ndGQ/AVdgWeYXXBBZO2TSHE6B7r+fuo6xR6YU+TZunYBxgIkTf6b7+d0q9+NdthCCEyIGe6QgghBKBVBLRUsY6FgYlGx9qgyIUQkSGPCwKh8SWAvS54y4Umpy3J7P0WLQihA4ER1wk+8QTKNbYZ6XrtYd3vvMTkotUGn78uVlPxlbc6WDVf8Z7LTF633uD9l5t89z3H6i0+87tYT1A94WnkYrqibby2/GOE9Mi/oxBicvmt3lHXKStUeCdpskshcpVjyZKcbvEmhDhGEsBCCCEEoFQUtAyMGYt4CwghxsLjjE26OB69figrhL8+biXaKijSn3iWhU9mb/kro85Q7lq3bsxxvP+K2MWi4gLFxtNNygoV33uvE59H8e5LHaysM1i/wmT5PAOlYvd9x04E3/irIC/XT87J8sayD7DSexZRHZmU7QkhMhPUozf39brG3+5GiHygtZa5UITII5IAFkIIIQBlREFaQIyJsltAbF/QxNdeN7FepuL44XQo9jSN74SxuUOzoDqWPP3tAyP3vT3y1PUc8h0iGgqOvNFxnLzWVo49gWsoxQ0bTVAR/AEHltaEIhM7cV7sOQWfWUKtawmWlibmQkyX/mg3Tqt4xHWcDkVE2nOLGSza0CCTAAuRR+RMVwghhAC0iqKlBcSYGMpAK3h45V58gf/P3nnHt1Wd//997r2SbHnGjuN4ZEMGYYa9pyDsFtoyCrSl0PbXlrbQAW2B0pYOWlq+3QM6gQKFtqyyxCobwh5JSCAkcWIncbyXpDvO749ry5It25JjW1fKeb9eiaW79Ei6uvecz3nO51HzXBXpMyDiZoxwhVRg1KKNUkrorWWBtSv/V/OL8b3WKPgNN6s3U+bP1LjyHGhuN/jqTRaX/8XCkRLbkazfOn4Bt1ifRp/TPe79FQpFZtT7F2FqnWNup3IjFflM99/+hrlqVbbDUCgUaaIEYIVCoVAoAImFUBYQ42L/tbNZtLk622Eocoj1W8cniwzIxtd/2hhVAN7YLAHBO4G36DDGFmmmkkDAAmfwWvPQKw6tXfCLe8efKlikldLjtE9AdAqFIh0iVoxg67Fj+nmP91qnUOQCPbfcgjF/ftySSaFQeBvV01UoFAqFAnCErQTgcSIQ6Mo+Q5EBc2eMLwPYFXZB1wTNHe7jVALMvS+66nCLvn3MY1ra1FonxGSEpXWFHLK7ztZ2yd3PO2zv3LHOs0Sy1dzADN/sCYpSoVCMhmnbzCmuxxGNo27X0aOEMUX+Un7NNVgHHsHVt1h8/3xlBaFQeB3VW1MoFAqFArClhabGRceFoznojqoArUiDHcwSqqscPM+KC0c+50bLDk6k3WrmJ2c+yubYezsUVyY0m5uYXvcBi+s1jljqNsWbWnfscwmIIE2xDyYiPIVCkQaWAz7NwNJHv9jUVQrMHfT6Vii8ioxE6CRId4Qd9rRXKBSTT04JwEKIWUKIJ4QQK4UQ7wghvty//BohxGYhxOv9/07KdqwKhUKhyC1saYHKAM4cKbE1iaYygBWZMI7xAtOSrFg7KLbsWif6DzX8YM6QfqglzZTH/Pu27wDQGHvfvQZMAQVakEWF+wMghOCyDxlsaeuP0x5fB7rKV8djnbdOVIgKhWIMbAf8mg9z+5ZRt1tQo9ETmaKgFIopRvb1gT9AbQVc/hdLDXYoFB4n13prFvBVKeVuwEHAF4QQu/Wvu0FKuXf/vweyF6JCodjZEJqGtFWZ51zHRmUAjxdHSDSpMoAVk8v7TZKu3sHnKzeObAFhO5Ld5wyek3e0/CTlMTUHTl59AHe1/pyG2LsTG/AIxGQEvyiIP59V5cZZFoT/rhgUuKNm+h3pKt8sji39+MQFqVAoRsWREp/mo+v+u5Fm6gEmgGAAemNTGJhCMYXISART8+M33PvYe01KAFYovExOCcBSyiYp5av9j7uAVUBddqNSKBQ7PYbB1uOPz3YUih1EWUDsAKr4x6SQl0VVxPgHCjY2S047cLDpunS2oCdqogl92LaOA1pCK3eLuT7lMXdxllBr1gLwr5b/G3dsmRBzIvi1wLDl08sET741KAB/62+ZZSSnyoRWKBSTg+OAX/dh+wSMkgTQ3iN5Y93U+owrFFOFtCy2d7n3nsX1gq3tedhuUSjyiDF7uqFQ6Kk0jxUJh8NTpoAIIeYC+wAvAocCXxRCXAC8jJsl3DZVsSgUip0b4fNhrV2b7TAUO4gtLVUEbjwIoQTgScKRoOWZptd3//2UXXYZr69zOHHf4cLtaDyz0uHSDw3+RqvKBBu6N2Hqw+dX2w7oAmb65rHF/IAlW2dBzfBjNlhrWWLvDsA2ayM3bfsmF834UWZvKkNMGcUnkgXgk/fX2H2OxnV3DYq+Q20sxkQIHOmgiZzK71AochJbuhYQ2n57IW17xOGX3WZpNGxX90hFftL38MPcVv4V9ttVYOgQGzkZXqFQeIB0err7A58bYxsB/GLHw0kPIUQx8C/gK1LKTiHE74DvA7L/78+AC1Ps9xngMwBf+MIXaGwcvWqrQrEz0tramu0Qcg7Z1wegriljEIvFPP0ZbXO2EOkNpoxR/S5GJhaNInEbAl7+fnMRy4bu7iCNjb1jb5wlMv1tOEceSWNjIwuq0n9fH2zzMafKpKuvit6OJvo63eUbGgtZ2fkfZlX10NibfO6VF5YyqzzCsc5V/JIL6fvP3TTOuAiAdc7rzNf2BqBio4G5tYf9xSmskPezNvLqpJ/H25ytFIjpWGLwdXabAa0tGlDJd26J8OkjW4GqjGKJORbru9+jQBRPfNCKjFD3jPxna2uMQKCXGXvtSdPmzYji1L+7iCnYvLWAmmDfFEfoPdTvIv/46VkPAtDYHKO5y8C0BbvP3JrlqHIP9dtQTBXpCMDPhcPhv421USgUOncC4hkTIYQPV/y9VUr5bwAp5daE9TcC96faV0r5R+CPANdcc42sra2d/IAVOcGD7X/ixPJPZzsMz6B+G5nRU11NG+pzGwu/f52nP6Ouvs0UtRSOGKOXY88mWtDAiDjg86nPaIKJWZKyFofa2vJshzIq6X7vUko6S0ooq62ltMmmpqYMMYolhCMl72yQ3LXCnV69sE5QVzf4WidXSV56cj6n73ko5UZV0r7zmmyO3tcVZC46aBNrLj84HucvNn6Kb868hXKjCv0Dyaw9D2GXWQdS1jGNRztupmPaRpYUHpTRZ5AJ67sKqQ/OolgvT1peIyU8YdHZp3P7i+77yeQ31dRdR1lBCZVGilRnxZSjrof5TWmPn/qKaRSWl1AzYwZaeXnK7aSUrNnuUFs7bWoD9Cjqd5FvuCm/Wzt92A5ML1Xf8XhRn5tiKhhzjlg4HD42FAqdk8Z2k27/INxewp+AVVLKnycsT2zpfhh4e7JjUeQPPXYnT3b+M9thKHIYc80aAGRMVfnIZWxpKw/gcbC9pAenTbkuTQZS7pBlrveIxRB+PwA+Hcwxamdu2i75c9jmiN3d5uqcGckfRsAnmF9rEdCCox6ndPZuPLVvgxuC49pF/KjxPKSUbC/uQq9xm5GhsvMA+Gvzd4YdI+r0cfnGE8Z4g+kRk9GkInADJIrhTeP4SRXp5bwfeWNHQlMoFGkiJRT4dKQhkNbIft1CCGKZ2XkrFDnF7CqB7cDXzzQoL8qnRotCkX+kaxL2h0mNIn0OBc4HjhFCvN7/7yTgJ0KIt4QQbwJHA5dmNUpFTrF1hMIwCkXaSIlWWRm3glDkJjam8gAeBzPbS9FmzMh2GHlJvnkAy0QB2CBtUWTdFklVKWzcNtxH09Yi+If46fZEJIlbVv/zTgAiTg8tViO7Gwe6+2KydloDoqgovu1uhQcD4MjBok3/bLmel3seTi/YNDBlDEP4Uq775kfda9DcatEfh0y7GGC5XsW/Wm+gKfbBxASqUChGxLShwND5034Pj1oEDuDltaoInCL/cPrvTQPe/EUB9/5r2crzWqHwKun2dD3R/ZBSPkPqWB6Y6lgU+YMlTXYJ7J3tMBQ5TNm3voWxYIErAJeV0ffQQ7R85jNJ22iVlRi77krshRdGPVbBCScg+/qIPvUUvr33xm5qwtm6Ff+++2LMmYMIBum55ZYR96+6+24Cy5ZNyPuaTC7feALXzR4UVKSUo04Fnwqe77qfIu2jWY0hZ8m7VFVv4DiQT/W8EgXggE+4xWKGJ8LG6Y26f8uC8M52aO5M1am00UVyc/bKm11lObHIXGGfwXc2nYGGzpJ7trNPj0P7V5sBEMHBDOJPVF3DU513EZN9/Gnrt9kYWwXAKz1hgIkpEiclmkhdAK+4EI7ZU+PxN13ByLTgir9aXP9pA32M0YAqXz0Am2NrqfHP27EYFQrFqHRHwNDca490Rhd4q8vV/VGRf/REYI+mp4FjOGk/jZJCKC4UrN8q2aVWnfMKhRdJVwDWQ6HQ0YwiBIfD4ccnJiRFIl29EtOGihJ1EZ0sep0u3ou+7gkBamdGSsk/W69n/6IT+MO2ryeJg15H+P1oxcU4vb3oQN/jwy+HTksLsZaWMY8VeXjwfZuvvx5/HHvlFWKvvDLm/s0f+hD1GzemFXe2cKSbKTNR06knkoNsNYEkU2Ivv4K0TAIHTZ5n6s6KJL8ygLv/8pf4Y78B0TGqhfdFIeCDDdsknztJT5kB3N6TXqaR5rjbOdgc8YutrPjEdMIdf2dadyFiVrIKHdCCdNgtcfF3gMUFB7A68lJarzcayfnJyQQDglMP1OMC8Ib+99zVB+VFI+4GgC4Mvlj9Szrs5h2OUaFQjIGUg7ZRo1hAAPTFJB29krJgHl3QFTs9URPqy902fWgfd1DzoEUaja2SXZSdrULhSdIVgAO43rsj3bUkMH9CIlIkcfWtboPihotTTxVMxa1PWnz8KDWNOV2ispfDSs4gInsoVJWzpwxHOvy86TN8rfYmAFqtJl7teZRXex7NcmTjQwSDyF63or1RX0/d++8jfD6kaYLRnyHS0+NONbYsd7pgIIC9ZQtaSUl8uezpQZSVuccUIj71N/44GkUUFAybEjywvuN735vCdz0+ep0uZvrmscX8AJ8IsLTwYJYUHszz3fcS1EpZ2fc8x5Z+nIbYu3Tb7dT5d2FDbCWmE2VuYHde630s6XgaOg4jT78ceK3Z/iVsjK1CIJIEGIFGrW8+uvBR6FSNeBzFCFgmRWeeibV5M/bWrVgNDQT22y/bUeUF0smvxOreu+4icMghABT4IWpKUjUt//eWzZF76PRGJd/6mEFpv2iyqG74MUuHCCoj2SWcd52f2Jtv8ui3ajBiksjCat7ufZKFHVXDBn99IsDPmy4GYIZvNkeUfITNsbUcW/Zxrt18Nmv6XmFh4b6Zvv2M2GOO4K0Nkt894F7bfnmvxdXn+Hh+tcOutYLppalPjGK9nCZTWUAoFJNNcaEYvHqNYQGx51yNdzdJDliYRxd0xU7Pmx84tOjJxQ3nzRQ88LKyPFEovEq6KmFPOBxWAm8OEDUlL6+VfPyobEeSO0ScHsr06cScCIWaEoCnii3mBzRbDfHnL/dPrz278nLub/uDJ7NDBzix/EKOKj0raZkoLIwLwE5nJ8LnDtoM/AUQxf3nl8/n/gOMmoQalj4fYkgV6URhQggBBQXDlieuFyUl43tTU0iP08E+RUdzVOnvk5bvXXRUWvufzTcmISqXBzePUZVqinnkVZvZVYLFs7zrA2AsXow2bRps3kzsjTfovP56qh95JNth5QV55wFs2/EBsYBv5Azgu19w2HdXjftfcjho8ejn/lC917ThlP01nlmZ3AH1P/4qxfvtx4cue5nSyy9nQcurrKSJ/dbOgYOTj9FsuvemH8y6D0O4lhX7496T9i0K8afmb+3QLBWRhrPaIbtpvLVh8HrU1u3+/efTNp9ZrlNRDFqKk6NUr+St3qc5oHj5uOObKm6424p7RyoUuUZ7D/Gh5LEsIHabrfHq+0oUU+QXJYUwN/YGMDjoX14EFcV51HBRKPIM7/YoFQDsPkdw5O7pf01dqgZVxsScCMV6OTEZyXYoOxUfRN8GYEN0JZaM8XjnP/hk1ffYp+gYTBnLcnSj82D7n4ctk5EIPXe6hYasDRumOqQcQfBqz6PEnD6qfXOzHYznkVLy4CsO7T3ZjmR0gstPRCt2Bx5EYSHm6tVpF61SjI6UoOVTCrDjIDS3TRPwiVEtICIxOHIPbUzf255o8vOo6YrLV50zXFiMvfwyAKVf+AK7RXaj1r8Anz28jdVptwLExd9EBryAJ5uyoKC63H183tHu1NqmVsmSWYJt7ZLv3ebOEBv6W3P9kMf+/f3on2P4b0wyUko2NksiMXWtUOQmkZhE0i/qjpEBXFMBBelP5lQocoJoxB52XgsheGejGuxQKLxKThWB2xkxdGhL098OBrNpWruk8g1OE4kkIAqVADxFfPcfJt8510eH1cxhJR/mt1sHPVeXFLqV2b836z/ZCi8tUmUny0iE3jvuoOKnP41nAiuGIrmj5ad8qupaglpptoNJiZeumpH+63ku6X8DBb42z5kTX+Y/4AAKjjoKp6OD2GuvUfqlL+G0t9P9178y/dZbwXGIvfEGgYMPRnZ3Iy0LYRhg20RffpmCY491rVH8fuzGRradcQYz7r0Xc9UqCo4+GnRXHOu75x4KTz89KR7Z2+sey+8fljWfC77vTp7V1pPRKCIQAFyRNjKKBhlLU58sLUx+HjUHMqeTP7j6jRtpPvtsis49FwDN8LEptgapHTDsmB+tvIwTyy9M+XpDLWQmCyEGZdxAfwe7rVtSXiRYs1nS0X+b+dl/LC77kJGUDTzbv2TM42/rgG/82eQnF/poapX85F9WRnZj6TLS7+wn/3IF7JYuqKuc8JdVKCYd007w8x5DANY1wYOvOBy/LHXxR4UiF4n0WQQCwwdRd61VOYYKhVdJSwAOh8MlAKFQyB8Oh72dmpdnlBQKgoH0O6pt3ZICPzz4iq18gNNEIPCJADFHCcBTQXsPdPc5/K/rTn4060Ge6XLF3lwq+rawYN9hv8nCk0+mdN06APzLlmUrtOHzoT3IX5qv5NKZf8h2GJ6nvX/K9+YW73+nA8hYjILly4k89FB8Weyll4i9NFg4a/t558UfNy5aNK7X2dLvIzuML30p42PVbdjgWSE43wTgkk9/mqJPfhKAgAExa+Rzuzc68rqh19/E5x9sdTNLU1F1++3xx6LfTqesuyDltsV6ecrlP5r1II923DLuAQRHOliMrW4HfDC/WtAblXT0SL52hsGGbZKSQne2V1F/2C2druhdGBjcdyyBWkrJ/rsKVqx1t1u3xc3WamqVNLVKlu2SwcyzXsnaJklZEBbUDO63uUVy/b9dkffyjxgU+KG8aPDz2tLmznJ7d5NDXaUSxRS5hWlJZk8X8Qxgxx69CBzA8cuUKKbIL2JRG39guN6wtT132q0Kxc5GpgphdygUWg28Abze/3c98O1wOPypiQ1NAW6D/r0mybO3Wnz/vLEzM7a0SS493eBHd1rKBzgDAlqQPqc722HkPXZ/FfaH2v8GgCY0PjH9Gmb4ZmczrIyp8c0fVjRQ6PqYHnBTQo6oRZU+VR54LH73gNuhfPodhzMO0Qm/ZserLHuNAcFJxmKUfv7zTP/jH+NFC83Vq3Ha27G3bkWrqCCw//5YmzeDaSKCQZzubqz16wmefDLW+vVYDQ3oM2cSCYdxurvpvvHGYa+nz5qFb/FiRFER5qpV+HbdFWOXXdBKStDKy92ijN3dRJ59FrupiaKzzsJ8911kZyfGLrvQe+ed+JYudbP1o9G4t7bXkHnoAawFgwB0iUZMa+aI2776vuT51Q7L9x1+zl/RsJwfznoAXeh09Uli1mCWbFEADl86ttAiAgFO932KkmhjRu9BCIEuDGxMDPz8ePMFXFH397T3f6UnzJOdd4yYYTzAtGLBWUcYrPiTyewZGhUlcP2/7YT18JewRcSEvliyALwxtjrlMf/5tM38mYI95gpmThMsmeUKuHc96967BrJyxxKAL73RFbBvuNgXL1bsPh/cb0D8LSuC6+5yH//sIoNN2yWVJa69xYcP1lnbqIQCRe7x7mbJ+02SixYtBcC0IwTG2EehyDcaWgRawfAzv6tPzUZWKLxKpgLwDGDv/n97AV8EZgObJjQqRRwBbNou0/aNenmtw3F76xy+VCNqSnx66iIhimQCopB2Z1u2w8h7eiNQXQ4rzNv50LQvArBb8ODRd/IgxXo5bdZWCv2piwYO+EwqhnNs6ceJyl58Kbw1FYOsanCSPN3vfMbmuVUOByzUaOuWzK32XiaREAKnrQ1j3rz4cwoK8O+997Bt/UOKHQb6s+Z9ixbh688K9u++OwDlV1017piKzjor5fKSiy8GoOOnP8VubcWo9eaAhMyjDGBz7Vq6fvlLSi91bX9+0Xwhh/U9MGy7vzzqioW1FaMfb2N0JdusBlqm30Zv9BNxAThmQbkx9odmNzayf9eZtNz/R8ouuyyj92IIH5Y0MYSfNntr2vv12B3c1frzjF7LdqCiGAr9YtjyAdsva8js8/mBPYg5Efxa8sDG86sdnl8NXzldp6nVFbAGBNxvnGnEBeBf329x3tE637vN4ucXDTZANzY73HD34Ivd9WzyC29rl/zozkRB2IcjJV+9yV028HeA4kLo6lMCsMLbPP2OzeFLkweiGlsdfAb4NFf8sp2xs/obmiWOI1W/TJE3rGv1IaqGD6AvnS1o7VYCcK4ipeTeFx0W1gmWeLgItWJ8ZCQAh8PhduDJ/n8AhEKha4GOiQxK4RI1Jc+sdIiasLh+7AuolJKt7e7jp99xePodN6MjE0+3jl7J9/5h8bOLdo5KBd19ko5eib+4AMvjhcfygb4YzJ+p8QpwcMmp2Q5n3NT7F9HjpLjsSYl0nLgPqiI1p077XLZD8DTt3ZI/PmRzwELBS2tcceS5Ve71/Jp/uALKAQud+LpsctqBmjsMDCAEzvbt6BVjKHdewrJw2trAowKwk0cZwJ3XX+8+0AY7E80dg+fwi+867Ler4M0P3GVPvDn6jIrfb/sa51R+E4BtHZJp/VXHTRt8aSTKG7vsAlJSeMopmbwNd99+AThd7mv7PYeUnM5PGj+Z8Wtd+iE9Kbv3x580uOKv7nXg3c3uZ+UMuRRsMdfTbG2izr9LfFnUdDc6YneNLW1QVymQwCvvSa7/tJFUbO/9JsnNj9tImWyvkSj+Ajy70v2Ovn++wVU3W0ni74BFhSYEN1zsw3YkX/tTsgDsNwQr1jocupvGPc/bnH2ksi5TeIuf/suksRX2nKdRFhz8jdRU2uw7Y7CvJNOwgJg7Q9DWDZXeLIGgUGTM4TUtCDFcM5hbLehWhel3CCklpg3/ed7mhdWSs4/QaemUhF9377vLFggatkuaR1Hhdq0Vo86yueAYnX0WaGzaLvnZf4Zfw558C75+hqC2Mk8aogog8wzgVFwLrAV+OgHHUiTQ1QehfTQefsWhIA09KWLCSfu5HatLP6Rzw902e8wVmJbEl0Y2jJSSaGx4RyKfeW6VwwvtDsdX+zCVADzpRExJcSEU2DOyHcoOUWZMZ33k7ZTrnPZ2Co46amoDyhEcYaMJb1oYeInv3mZx1B4aJ++vccoBcPUtbqMs0bPTC+IvwL0vOpyUIADLSARyaADEt/vuCJ93BzzzKQPYbmsDSPLNrenvVNzzgs2Tbznc/tTg9q3dcMxeo2ee9PYPxA1sJaXkH0/afOecsZu3WmUlsm98PVQ9TQFY9nuyr4u8RZk+HYBr6v9Nq9WU9mvNrkr+DHwG/PRCg0decwi/1u8/OkQrX1Z0XFJ8nb2S79xqUTMN2nskr69zOO9onaP21Dnv6MH9brjYR1ef5OpbLNZtcWN/4GWHI5ZqcV/ln19kxL/DNz9wWL9NUlwguObjBtfcarFsgdvh/NJpyd+Brgm+c46BhLhYD7CwVuNbf3OvcR87Qg4r3qdQpOLSG02++VGDGeWTe740trp/r7k1uUhiV8SmaNrgc8ce+3pQVynoiUoqPVVuVqEYP7KzC9tuHba8qEDw8Ks2e88fvH9ZtuSlNZKDF4sdrrsgpcR24M9hm1UNEk2MrF9cdLzObrNFfwzQ2etaJhX63Zk0uub+jZhu8VnTgqY2SXOHZFG9oLhA8NIah43NkuX7ahQXiPhAczDgbg/uMbe1u33dl9e6Fla7zRJ0R+Dk/TUKA4IXVzs8u8qh0A8fOlhnxRqH95oGAq+CUeoD3P5U8gDsq++nfsP77SpYVKdx65M2axsls6sEZxyi8V6T5P6XkhsLf3/c5u+PDy9geegSjdMP0vjLozY//XfyrB5F7pORABwKhX6L6/37OvBmOByOALUwBeWQd0IeedXmvSbJaQfqtPWM/RF39w02qmdXaew1z2FhnUZPFMrH+Kav/LtJT9S9QO1MVJUJqgUYwq8ygKeAngjUTBNUyvEVfvIKpVoF/2y9nn2LQ8krhHB9RqPR7AQGni4CJ4WDPiHjjvnNrrWC0w9yhfKSQvjMcp0/PmRz5B46x+wFkZikulxQGMh+J/JfiVPANQ0ZjSKM3PmOhd+PjHn32p9PGcCJMyN6bFe4dQso6Tz51vBs3+ICOGy34W0SKSV+UUhM9rE28ioA0f7+yYAVQjqnoPnWW3Q/9xz+Aw/M7I0ABj5saWJLG8HI7aYrGpbHH/d1dXFJ9a8o1IqSMnMzocDnZtRq+uB7PedIHXvIZb9YL6fT2h5/vn6ru8GFxxv84A73w5pXnfrEKikUnH6gxj0vOhy3t8ajrzs82p9xdMxeWlLHfc95Gnu6ji+UBUWSOJyK8uLh655Z6aAJ+PAhGl19UBYc/TNQ5D/X/MPkpP10Dljo/rZeWuNw2/9s5swQfOX0wR93W7ecdAG4wAc//ITBZTdZOI50z9Eiwbubo8ypGhzQduRwEWUojoQN2ySzqyYzYoViCgn48dUOv5/VVbjWReC2Wb/5t0ER8c5n4Owj9GGC5o4wWvLaTY+M/3UeGOLot6ohs2OtbHAD+90Dyfv1xeC2/6U+1uJ6wZmH6kRi7v2wJDi+a9ze8wWmRbyvMGcGHLtXchLOxmaH7Z1QVyGonjb8dT6z3OCmhy3e2ei+D9uRSbOFFLlJpr20TcDRwJeA+aFQaDOuL/DDoVDow8AqYG04HJ64X/ROjK7DgYs0Dlqs8dArY3+kPRGZNE3wk8cZPPKqzStrJcfuPXLWnWVLevr1qv+ucJgzw/1hOzL/MzFWb3LQywU+/CoDeArojkBVKUR7crvg3oDnmyljw7xsZXc3/gMOyEZYnkdqDrrKAB6V5g43qyER13/LprocDF2Ah7KHihKt34RwBz88nFE7DF0H27tNFkdCx3evwfn1N9CKU3uO5woFhx9O9Ck3xbfH6aDOtws2UWD4+bL7HMHbGyRGisvFhthKqnz1bI6tpdfp4sjAZ4h1ueti/X3MdCwgCkIh0PVxDdgZwm0z2NLESDH9FeA/rb9Ket5mb6XGvyDj10rkR58cfK0Bi4ziAnAcSeJ1oUgro9F5P/7cdlyP3+ml7jYzpw1cS1Jz4GJXAD55fz0u/gIsWzB6ksB4srqO2kPjybccOnvgjXUOR+zufnmJbdBt7W77NuBzbSPGy87Qrp0ILFuia4PfZyafWyQmue4ui++c66OrV9LWI+NZ7KmOs71T8uM7LX7yKWPQG1eCoYFpuVZ4977onoMbtklWNThxT8p3NkoW1U/EO06N40gi5uDn8NV+C5MbLvZRXuJQYGSWAVxdLnhmpcPhSycnXoViyrHtlLO+NE3w6vuSV99P/l387CKDr95kcftTNvXTBZu2y/jfVCyuF6ze5Gb4Lt9X4631kgI/fCqk4zdIW4wcKEKeuHlv1K2z9MFWGZ9t1BOB8qLB3/zALJ5Uz6WUOP2ztMa6Pg49TioaGxupnUA7MkMXKdtQicyu0sYckLroBFcufPFdh44eqCiZoAAVWSNTD+AfDjwOhUI+YAmwJ7AHcHH/3yrAm+W0c4y6SjeFf4D/u8fiS6fpI15kfnGvzSkHaCydPbisslRwyxM2968Y3UsPBtP6r7vL5NIbTarK3A4DuJkmQrhTI4QG7zVKyorchnhpIVgORGLudIqI6Vbh3tLuTgt8Z6NrIt7Y4ooFJYVuZ6Q36hZEWFAjCPjci/DiWRpb2yQbmiVzZwg2NEuWzhbomqCxVdLaJSkvEvgM9wK9pU0yc5rAdtzpJqsbHCpLBeVF7jSM4kKoKBa097qF9AZet67SPd7mFklwhsoAnipipqSoQKOsY0m2Q5kQrmw4letmP5y0zGlrw7cki+/Pw51bKRx04e3s0GznT7/xgcNBi1OLLKMJNtnknb5n0YWPecIAy9rhqX1Tiq4jPSwASymhuxOnoyPnBeBEodWUMYr1aVhaDw+/Wpi0XVEAjtxD4+0NNsUpWpPPdP6HmONaN6yPvsNHp13He667BN19cPhSjYBv7HNQr65GBIZXL08Hv1aAKSNYMoaRQsDudbp4oft+APYtCvFKT5jDS86YlAEwTRue/VSkldLrdHDpjYOd7++fP3jt3dI2+jEL/SLeJhz4e+mN5piF+cbD8n01GrZLqqe57dUBAXhowbjROGk/jajZPx3Xdqf0/neFE/c3HCDxmOVF0N4D3z7LIGC47dN8LM6VadExx5F8/c+pP/vjl2nsNktQViTwGxAMCJ5b5XDIEvczTsz0Szz3YOxr7H+edzjzUB3LlnT0ws1PJO9zYUjnqbcd/viQzQ0Xa+yzQFBSOMLBJoiBuipAPCse3PdWWWlSu3jwNxVbvQoOOWnU41WVgd/bTSCFIm0aWyVRU4xY92SPuYK31rs3p59eaMTbsDtiIxDaZ3z7pRKKiwpgUb1IGkQaWtt7aHs28bkQgnSb5TnVLh6BQr+buazIfca8DYVCoe+Hw+FhJbjD4bAJvNn/j1Ao9N1wOHxSKBQqn/Aod1IamiX79ieLSKCpVWJaxCtdJ/Ldf7gNrbkzki8wyxYInl8tmFct4lkcl35IJ2a6F+6Z0wS6BvNnDu7X2p9J09zBiI3ATPnvipHXhV9PfDZcqH7k1QkJYUR2pX8kL+vST/5jWm4HbWiGYy5y3eyHuaFpSDEzKV2hplRV+EiF1Gw0vJ0BnO0mWl/MrZ6cSwg0Ti6/mFXa35BDzUg9jvB4BrCUIGyLvgcfpOSii7Idzg7Ref318QJwpoyyzdyI5nuLp54/EnCnhL672eG19yU9EXefVJ2mAq2IY8rO5Y6WnwAQ9BtETPe8s2Vye2Y0RCCA096ONo6ihX5RQExG6JM99MnkGS1SSv7T+ksArq2/FweHg4tPZVZg4q2PTj9QQxfDPYD9WgHdseTM5mB/H/3SD+kUjcM+ZrK8/wI+wRdPcbsj/11h09oluWWI+DdQpC5mSd7eINmwTfLU24Nv+oGXU193BvwNj9lT4/EhRQXbe9y/A5YYI1HodycKDC1oVF0Oe87V2HuBxsqNDv/tT7Q472idfzxp48gqPnGsw98esznvaJ151YJnVzq0dLnJB9s74Qun6NRVCPw+15eytUtSVymwHOjqhdKgK+77dDczrbJ08HtLFlgnj+pyOHpPd7r2I686Kdvkdz6T/H397NMG3REoDQosW9LZC1ET/v2cneB3CXvOFRywUKOlS/Kf5x0+2OqwucVdV1zgjmfvNltwzJ46M8oFe8zVuPRGk7ZuyWvvSyr2EhkL3JnwfpMTt8Y7co9BARigpSe5PdP5+9/ChV8d9XhCqGJKivzhnhdsItEShD/19ffCkBrtyCdcATh5tpEiN0nnl/mVUCj0Z8b+tr8EfCccDrfvcFQKAMqLBj0eBa7wGzWHC8CRmKS9B05YprGgJjlzTIjBhvWJ+2lJ2cO7jDDL4LpPuS/QE5EUFeT3j3zTdsl9ze5joS5ok45pg9+Q2U+znCD8Ynh6muzuRuR4pt5kIYWjisCNQaHfzUzLJaKylxK9wu2te1hMTYmmDVfPPIQjwb94EZFHH815ARig+rHHAPjd1ss4tvRc1ne0UVnivs8DF2kcuEhj1UaT2orU92MpJSt6HuKE8k/El/kNd3YSuBYCVWVpCsB+P057O3pdXcbvQ+KwKbaWUn06lUZyY2rA9/eL1b+M2wVNhvi7fF+NQ3dzi7OlGlTt7oN9FgguOCa5qT+0qJyXaOuG79/uCrLH7KVx6gHJ9wu/IVi2QLBsAXz44OH3Eill0qBBT0Ry5c1WXPz99lmuDUaiFUFHj6SjV1JbIfjXc2619URGynja2g7h1514RfYBEsXrvz1mD1uWyG/u37Hr5aUf0nnlvWQx/LyjdWorBBUl7nRnIVyx+6U1Dj4dZk4TaBo8sMKmsRU+ephOdTm88K5DValg6RyNuhQi5YGLBs8bKd2UCct2/aV/94DNwYs1qsvhyD3c76W038vZ0EV8yvAXThm52/mf5wfF359dZKAJwW3/s3jxXcnZRwzGs2SW4Hu3WRywUPDYGw6PveFw1dkGFSUT34b/13MOP7zAjVkINys+akosG55YK5My+mWaPysP324UioyImuCT5ogZwIr8oiAgaO/Okw78Tk46AnAR8B5jC8BZrHqUn6xskJy4n/s4akJXn/t3KJtb3B/jWGn5mfqe5bv4C1A/XSD7BWCVATz5WA5IzUSTOeQROgql+pDMsX5PKKFlr4MthEA6TlZjSIWUsr8InGoojsY7GyVH7zl8+bXnezeTQoJr7ZGLArDHLSAcB4xp5URvfS7boewwJV/5Cr4Fgx64hvChywL221Vj+b7JYl7RCEZipnSbmnqC766hCx58xeH4ZTqPvOZw+UfS/K34fDidnWiFmc8jL9dn0Km3EpV9FIjBqmV2QiGoyRB9EzlhmfuZ6ZqMVyFPZItcyelLvXUfGAsh3Kz3H33CoMCfeRt0aMZ4UYHgs8t11jS6BZUHSGwPlxW5lgYAZx1ucNbh4wx+CJs3N1JTW4PAHeBwHDD0sacCJ4rYib6RtiMJv+bw8KuugvjDCwwKA4LZVanF8ESml8JJ+yVvs3R28rkxNIFkNIRwUyb8BiysE9xw8Y6fZ6kyzF9aM7xd/qnjdL7xF4vDdtM56wjX1mNg0ADg2L00Tjlg4gaahxZbDfhc27oDF0s2x9zXOa3kszj6N5Cx2Jhi2ECfTaHIdWKWJOjEEIFJ9mJReIICn2v3qch9xmwlh8Ph3Go95hGJRUwGKmSnSr0fsGx4ea0zZiNQMZz8l7m9gwBsLEQKz8RcpNo3J3mBlHT94heUXXZZdgICtwCXZaUsypBNpASh2Z7PAM5216w3mrrCrlcH5CTwpZm/cUUwTUM63hVTUyHGWQRsqpCAFvBT/OlPZzuUCeXwkjM4sPgU3hePDPOv/chhekqrK4CYdL0hBnx363xu9fHjl2n84UGLgxYJZqaoZJ0KMVC0cBw+wLrwYUmTmNNHQAviSAdLxvh3v/XDNfX/yviY40XTXOuLoZTEFjNthExqr/KTTxlEYoxL/B2JxbM0Fs+asMOlTWJhIF24vsTp7SdSPtY1wfJ99WGDJfnMDRf74sWbBvAZIkksvuFiX5IdxmNvOLT3SM47escGTR1Hsrh+5PPQloPtmSL/NKQGsrd3TAG4vCi3fpMKxUjMmSFY1LYKUXBItkNRTAE+HV5+z2H/hUoazHW8m1KkYNe6BLuGGsG+u2gpp/kZOnztDIOaSSjOsTOhLCCmBlu6GcDt3e601URPu1xDEzpOQifAfPPNLEcEwjCQluW5KVkSQFjoHvcAzjb7zM+9hlWh1u9ZkaMZwF6OWTogkIiS/Cq7HBBBAloBm9uirFzpJGUn7ruL+xv49lnDm6jN5ibAzR4+pPh0Tq/4PADvbBicPn7WEenHEXnoIYo+9rGM4/cJP7Y0MWWUAq0IG4tnu+7htV7X4qJQmzobIE24PqhD6bUi8Wn4uYKhC4pVMpkigVQDokOZO0Nw/jE6FSWCrl7J1bdanHmIHJa9mwkdvbDnvJHvxw6DHsCa0JGaQMbGTo8zrWwPMysUE0NHD8yzNoL/qGyHopgCSotgXnXu9tkVg+y0AvDWDiNlAYX66YLj9taoLBEI4frtDnjvTutvz2vCLWI1IMbqmvvPst1/vVEoL3ane2n9y4VwR04GqhMPrOvqc6dQNTS7VW8NHeoqBdXlyT+wL5xisLbRSdlPvfsFm8s+ZGRs8aBID1vak1K5e2fFkjE0fFx7h4XtTF5hmanAJwKYMkZA9PdYDQ9cUg0DzKkpDpMJUgKa41oFeBjBcB/JqeSDrbnVOUz6lIQgpll0WNspM6ZnK6SMELqO42EB2JGuAJyP6PiommbhH6Fm5vT+wcEOazuFWjF+rYDXex8HXMFlQPwF4uJvpgQOO2xcg2W68GHKGKaMUagVY8ooD3X8GXALhE4lmsawLGqARt8TaFpyoVLVnlHkI18+fbBdURJ0rxvf+ru1Q+3LLW2SGWUjr3dwBgVgdGL+FNUYU9AdGXdICoWnmF0lEGtiCF/u9uMU6aOJfG2N7nx4uyc+ifj01Kfwpu2Svz6a/c7g9z5u8MY6hxMTpnrpGsRS+Lx19pJzWR5e5/KNJyQ9n+oOXT5j9WcAH7mHxuNv5HY1DFcAjhKgXwCWkuBZZ2U1JuHzIT0oANuORAorqWq2F9H6PSizNZ6Wy6PrQtN4f24n69p+x/lVV2U7nPTQNG9nAEvQZO43uaWURJ9+GvrtcSTuIMvCWo3QbqN3Hn/Y+HE+Pv1K9gwezhZz/ajbFmao5cpYDDEOCwhD+LBkjOe776PamMPG6GoADik+LeNj7Si6gOdWOew1JFtxWsuZ9M3rGczQB36w+Ryurv/nVIeoUEwpP7vI4Du3uh2mgWSfn11k8NWb0hOFf3CHyfZOuOzDI3eTbWnFZ3/1Od3c9ad57G7GxmzhzJ6RXIRQochlpGV5I/lFoVCkzc77ix3lvvvDTxggXU+1nj7Xd7eqzB31kA6I/jb2Oxsk+y/sP5AETRss2iAGikGJ4csG6I1CsL/fkZhtdumNJve8aA/z+TL01IXe3Cq/qiExUVhyuHjWa3cS1EdIU1JkhCVNhPTHxV/Llhh6bp6/G6IrmR1YQrFeDoA0TYInn5zdoAzD9QD2GNKyQZNoHs8AHsimyz0jBg8gBjKgckiw1HVPl2X3YgbweIpMOi0taKWD99ABy6U3ep8kVH7+mPvfuv1a9pz9MHsHj6ZUH55d/sVTdP67wmHJrMzuJTIaHZdfuoEPG5v3Iq/xHq/xbPfdABxVOvUDgBJYs3n4OSKscnrs9rgAvKL7YXqcjimOTqGYejQh6IuS1OfatH306+hAP82yJds73WV1lSNv7yRk02v9LQbHTsNPXrr9v+IRCl0qFLmG0iAUitzC2z3xSaSiyOaaNEaB3Rt06gvbgYsSlic+7L8QpirkkLhspCrXpx+kcc8LDnvPT16uawJ7SKUPx5EsqFEX3olA9neym80GDiv5MKdOc6dO3tf2BzbG3mVx4f7ZDC8vkLhV3DXpdrjPPFSjN5q7Gey7FR6MTwyKB0LTkFkWk7yaASxNG3TH89OPByx+jCyF6S2pL0OEQDfh7b5nsx1J2gjDQHo4A9iRoEkHe8MGNs2ene1wRmRTGtv4ly0DkjPn9goeNeZ+x5SeEy/+5hMBTiy/cNg2C2o0vnTaOIZtYrFxWUAMtOWWBY/lgOKT+P22rxIqOz8r1idRc/hVQ0pJbXEFnXYr0311ANzV+nMAHOmgCTXEpchvbAcuu8kdDK+rhBvutikpBEdKTAuu+KvFnBmCr5xu0N4j+e4/LE5YpvHEm24bbqxM4UQPYAd3H9seu+0VMaG1S1Ls0cKuCoVCochvxhSAQ6HQ99I5UDgcvnrHw1EAHLabKwDvPie5gW5oYA3RliImLJ2jGhE7QlNbcuep1+liSeFB8eez/YvpsJunOqy8xZQxcAKcvL9GQ7PkX8+6DfQvn6Yztzq3OqU+4XffTz9Syn6z2yzSXwTOaziOA5pEeDy3diQ/TUUaaBp6zL1JZdNHOSNywQICSe9//rPDxxJlZciO5AzQ0q9/nc4bbkArLcW3aBHR558HIPjhD9N7771Jn03gqKOIPvMMWkUFmCa+xYuJvfUWsrsb/H706mrshoaUr23Mn8/0f/wDgIjTO+ibngYaOgHhjhKujbzC4sIDMnrfoyFjO+ZfWGHUUO1zhfnjys6bqLAyoi9F0mFzB3S1VNNqrWI+ewBQZcyi2Wrgua57OKz0w1McpUIxtXziWJ2/PWbz/fMMOnrh+n9b1E8X9EbhqpvdNtKGbTKpHszDr7r3r599euz8KAcbA3fwSPYLwI41dhG4qlK3eBZVmb4jxWRhSwuBiA9MSilpNN/nl1u+AMCVdbdx7eZzuHTmH/hP2y+5YPo1FGhBbGmhC5/nExsmC9VU3vnIgVa9Ig3SyQCelfC4ADgTWAFsAGYDBwD/mvjQdl4MXaQceU5VrPzGh2wOWuxtQcXr1Exz/bge67yVxzpvBeBLM38dXz/TP5em2AfZCi/vsGSMtg4flik5Zk+Nl9a4J/Uv7rW54eLcOpcN4cdKEIBLv/AFjPnzR9lj8hEeLQLnWDZCk/Gpkl5FS6+Oi6KfpA6AENjS7Vhf0bAcgFPKP8vcwFJq/bugoXlPFE51Y/UQA37UFb/5DcFTT52U1yi95JKUyyt+8Yu09m9sbKS2tjbt1+tzugjqJcDgzJvRSNxmum8WRdoolZkyxOnoSLKmGA+FWgnLy4ZnJU8VNZUC3xD9YWu7ZM+ambTZ/4sv26voKB7tuJla/y5THKFCMfXsPV9j7/lue6O4EE47UKO5Y1D8veFiH3c9a/PCaoeLjtdZWC/o7IHv3mbFLf1Gw5E2mtafASzTzwCeW63R2qWkMy/xrQbXuu179f8hoAXZEFvJ77ZeFl9/7eZzALhhy2fd7TZ/NGn/w0rOYGHBMoJaKR9E36bWv4B5gT282eaZQLZ3qPNYochFxhSAw+HwpwYeh0Kh24FzwuHwvxKWnQF8NNW+ioklVQbw+m2S3WarC/COoGlgDen/z/TNiz82hJ9Xex5l76KjpjawPETgWkCsbwpy2GzBnBkaN1ysYTuSr/3JYmu7pLpc8PJah7nVIl4F3qv4hgjAgQMPzGI0LsLv92QGsLRt0PB8BrCuZU8AtmyJ4e2PZ3RiMSLvvs1XZt7Pzdu/R4vVyP3tf5iUl1oQ2IsSvYLXe5+IL5vtX4ImNPYOHk27vY12q5lms4FFhfvT53TzfPd9LCk8iP2KQkgkvU4XpRrM9rAA7HoAO5Mm/maDPqeLQq0YGPQCHg2BwMZESsmq3ucJTWCmbcXPf+5mNI+DDquZJnMdofLzObose8U/y4KCY/ZKvnB0R6C+Uuc3HTe7oq9vF5YUHkilURu301AodiaO3lPn/SaH51fDlWe53d+PHKrzkUMHR0/Ki8e2fhjAwUbvt4CIZwCnIQCXBWH9VtVv8xKz/ItpiK3mh5vP48TyT3N/+x84t/Jb/KPlh3y++v8o0adRYcyM2+f0OT00xtZSblSzzdzIX5uv5pmuf+9wHIcUn0ZAK2T3wsP4X9ed7BE8gt0LD0UgPCckb++UrG30wKxHhUKRMZl6AJ8IfHzIsnuBv0xMOIrRMHSGeQAfukQjtM/OOfVkotCEKwD/YNb9fLvhFAD0hEJVpXoltf7sZnXmE5aM8ZkTCti1bLDDqmuCzyzX6YtKQPD0Ow7tPYL/rvBmKuZuswQXLzcwhJ+I05PtcJLxbAawg8iBgpWaJrCz1J7tiUBzjmVUJH6bEhALF2AIg2/Uus2CgSI8EslTXXexObaWN3uf2uHXfT/6xrBlG2OrAFgffSdp+WbzvfjjVX0vsKrvhcGVGlzlZC97cyycfguIfCImo/iFWwQhnQxggBZrC1HZS6u9ZUJjKTjqqHHvu6LnoYkLZIIJv2bzpdMMzg26Ikaj+R4LC5dxbuU3ebzzNs/UNMgZqxhFXlAYcM+1yglILrClPWgZkIEHcLAA3tkoOWzpDoegmABsadMQW83ltX/jusZP8J+2XwKwR/Bwrit6OGnbAe/0Qq2IBQV7A1Bp1PDjWQ8lFX93pIODhUDnWw0nxfcXiFHvec913wvAE513AKTdVhIIPjvjp/x+29fiyw4uPpXnu+9jpm8uy8sv5O3eZ4g4PRxdejarIysId/x9xONV++ZwTOm5vNLzCOdO/3a8kGgij7/h0NWHO0VJoVDkFJkKwO8BXwB+mbDs/wHvT1hECgBMJ4pPCyQt0/XkTFXTkljKrHKH0TQwLQgGfHy15kZ6na6k9QY+Ou3WLEWXf9hYTC/2ow+ZYqdrYNrwwMs2G5slG5u9e26vbHBjM4Z4AHsB4fe7le09hmPlRgZwNi0gXn3fYVOLd8/7sfAvXkJw9yPRxWAGVbwAKoKjSj8GwMf5dlbiGyCxMvwDm36ZlMXvNaQEkWcZNpY0CWjpewADLCzYlz6nm32LQpMUVf4QsyRt3W6m4V7iSPYqOpLLN55AzIky3VeXNMPJSRCxpoJuu51t5kbmF+zJ+ug7/G7rZVw3++Gxd1QoJoAZZbDPgokRrBKLwBkiQLFdhLRjONLGxk4qEJyIrgnmzFCimVdoMtcBUGHMZJ/gMbzW+zhARoUyhxZ614SG1u8Pnen1beigmC0t1kRe4a/NI5daksgk8Rfg+e77ANhirk/aN50ivVvNDdzW8iMArtl0BtfNfpj/a/ocX6j+RVyb8BlwYUiHHU98VuQQ+dUa3XnJVAC+CPhPKBT6BrAZqAdM4IyJDmxnpsfu5HubP8p36/9NQcKo21ALiKY2SWmhakTsCI60MYSG2S+sz/ANr7IuhOCVnjCnT/tCxp1WxXBsaScJRAPoGvz6/uSp2OlOxZtqBoqGuBYQ3sq2FQUFyGiU6IoVBPb3RpYXgHQkaBLN4yUENM2tHp4NuvvgwEXeFsjHwpYmRorft5dI7FwFtRIcD1qmDOBaQORXk9s9R1wf37EsIGxpI4RGgRYk4vTEi8F5gVn+RRxf9olshzGMZ1e6F7DE83y6UcfrvY9z6rTPJgkb32w4iavq7qBYL5+S2F7qfoCHO/7GdbMfZm3fq5Tq06fkdRUKcGusXHBMpl3f1LgFwNxj7V90ArFXXqXznpv51YzfEJN9owp/+XVFz22aYus4fdrnATh7+uWczeVZjWfojAhdGCwpPHBMIdntW6UezHNrM4hh69MZALx84wlcvvEEABpia5hf0F9UtAzmVgtGai6/0fM/9io6ctRjKxSK7JDRXTAcDr8WCoV2BQ4CaoEm4PlwOOwtBSQNummLX9AGOLX8c3TaLUwzqrGkyXRfLX9t/g5HlX6MDdGVdNotSGBZ8Fj8WgF7B49GEzqG8GHJGD12Jz1OB5tj79FubaM+sJBuu40Xuu+nxWpitn8JG2Or0DGwsajxzadMn87qyEspY2y1tlDrXxB/rg/xqo3EYFG9t8UUr+NgY2gG5hj9/3r/Qhpj7zOvYPe0jmtLmw67mQpj5gREmV+4nf/hlx5Dd8/xn1xo8F6jZGGdd4WwE/fVXL9W4fOeABwI4HR2sv3jHyd45plU3HBDtkMCwLEshCY9nwGsa67olg3qpgvqKnL3mi6EwMZCz3hsOXsITUd67DeciMxDCwgLE4P0BglsaeIT/mEFN73A/sXLPXePf6/J4d4XHT55XHKnflHB/rzd9wya0OMFqwbottv5xZbP02m3THo2bou1hWKtnOe67uXRzlsAZQOhyE0SBWAhBFrMJvLCs1QaISzp3UFFRTKFWjEz9Fljb+hxRhJ/3XWp22TpzP74ZNX3+Gvz1ej4SBy6MC3wGzCSo/w/Wn6oBGCFwqOM2UsLhULHjLCquX//w0OhEOFw+PEJjWyS6ZUdlAxZdl/771Nu+2TnP5OeDzRaH2i/afQX6U5+OuBPaOM2DJrMdfGpJ0M5t/Jbw7xFNS05D2jDNsncatVo3hEc6WBoOqbtes+OxCHFp9EQezdJAB6t09JqNXJ900VqamMKRhKIdE0wcxpoQrCwztvndUevW8RjZrX3RAlRUEDX791rmfn++9htbWjl5cM3jEbB5wNNw3z7bYy5cxHFxUmbOM3NRF98kYIjjkCUlmKtW4dWWorT1YVWWoq5Zg3+3XYj9sYb+PfeG1FaGv9NSMsCx8HavBmnpQWr0wEz5vmOfjYtICzbHQjJVQQaljSndEr5jiI0Hcfpy3YYIyL7i8DlE4nCyViYMoYhfPhEgJj0lrXNgcUnjb3RFDHQNnx3k/tIHzLOtqhwP17pCQODbdHVfW7ywYaYm+AAbrbXRTN+xK4FyzJ6/cs3nsBp0z5PxOnh2LJzB+OSkpd7HmH/4hNot5p5ucdtE93T9hsACkRRfL1CkUvYWHELCADNAUcX7B48HNvDg4qKZEwZJagNVQQUAywpPJBLZv6aHrudrgQ7xEgMfDpERrGoUoN7+Yf6NvODdFrgf0pjGwnkVJWsUjGdsyovICYjVBn1dNotbLc2s1/RCdzW8iPWR99h7+DRnF15eUYXr8SLXaLPYKYXwMbY+7Raoxc7KSsSTCtWP8UdwcbCp+vExmirzQ0s5SdNn+K/7X/kx7Me4oqG5QBcOvMPGMKHRNLjdKBj8OutX5qCyHMXS5opLSA0Dba2T30842HXWsG2Dqif6fOcAIyUxF5yO/bm66/TtNdeWQ7IpX3abKzPHasygEfBtCQ+I3ev6QKBLS00j3/HiWhCR2ZL8U+DfLSAsDKwCbFkDEP48Qk/3XY7PhEYe6edlO6I5NHXHZbMEvQNuS1VGDOJSDepoM6/KwB/ab4KgCc6bk/a9qZt3xxz8Pp7mz7GN+tuwSf8dFjbAbi37bcAHF16Nr1OJ0VaGc9138u9bb/lrtafA25R3Utr/sBbvU+zb9FxPN91P5tia9gfJQArcgtH2kkDWQVL90Rqgv5yqFmLS5EZEaeHgOYdayEvUu/flfXRd/hz85XsVXQUABubJZomUhaBG5hlEpN9nrJtUigULmMKwOFweN5Y2+QiBRSzT1Hq5Ob/V/3zcR83UejdkVEvvyggJodPrEg8YsySBHyqkbEjONLGr+nExpitVagNZka2280AFGll3LDls6PuN9RmZCrwetbxSNlfUVMyrTjFDh6krlLww39aHLDYexnAek0NAE13vcrSbS9gzJ5N1x//SPF557mZuvvvT2zFCjp+8AMAyn/4Q2KvvUbvnXcCUHjiifQ9+CAAorAQ3x57IIJBYi+9hOztBcC3557YmzbhtLai19Qgioqw3nsPvaYGfeZMYq+9Fo9HFBZiLFiAHqwmePxxY3p+ZhtNgO1kpwMXs9zCGrmKmwEcS8qK8jpC03E8PF3XcWT+WUD0Z/WmvS0+DOGn1+kasbDSzo4ArrrZPY8/caw+bCaBIQLxwbctsQ/iy6+su51rN58NwBkVX+a9yOvxzOC3ep+mXK9iVmAxMNie+eGs/9LjdHBlw6l8p/4uftj4cY4rO59HO24G4JsNJya99gxjNtusjXyt5k9U+eqBwezp/YqPZ0W3t9ssCkUq3GSGwRu2r6IK3/nnuolAHm/nKAaJyl4KRNHYG+7kzA0s5djSj8efj1bI0OzXL67e9GHP90kVip2RjLuaoVAoBJwNzAiHw6eGQqF9gbJcs4DwOj4RYJu5cdRtojEIeLvWjudxsPHpBuYYM0uDeinzArvzQfRtftx4PgBX17vWIKmM9+9quYEVPQ8NO069fyGbYmuGLa80ammxGgH3u987eDSleiXPdt1NRPagoeEkTAMe8JOu8c0jqJWyR/BwNkZX8WrvYxm9/2xgy9QWEDXTJq44x2QzvdT9KxwdW9qjbzzFiFI3uH+8Uca155+Mv0BQ+etfAxA46CD377JllHw2YfDivPOo+NnPJjeudgktT3k+A1jTsmsB4c+Nn0BKhOjPAM4hCwhd8+HY3hWA3aGIfBOAU88CSbktJobwE9RK+V/nP6nxz+cwPjzJEeY2qRIDirRSdg8eCrif6a+2XAJAiT4NgB/Mug9D+Dmw+CQu33gCd7b8jJd7HgGGDyp/q+Hk+OPvbvoIAMeWnkOo7Dxe6Q7zz9br2TN4BG/2PgXA/5v58xGnWBdqxUSc7pTrFIpEYk4EC5OG6GoWFQ4WuL184wl8p/4uHuv4B7P8i9g9eAiG8LMltp7pvrpJK0rqYCe1ZQUaTv+t77HOW+lxOvhwxSWT8tqKiaPZ3KRmlqRJ4sBGW/fI7ZKo08fysgt5qOPPw9bd1XIDG6IruWTmr4jJCAFR2N92tLFkDF0YSMDAQAjBVnMDAo0Zvlms7lvB0sJDEELQ63QhEKyLvMnbvc+wZ9GRRJ1eYjJKuV6FjcWW2Hp2Cx5MhV6NTxv5O3akHe+bODjxPv1oRfJGm8kkpUTG++xubQwBGMKPlBIHt9+oC4M+pxuJRMdgm1xPkeVHFwZbzA/wiQKm6TO4cdsVLCjYi9mBxZTr1Wy3NhFzIpgyxoqeB2mxmpgbWMr66DtJcXy15kYsafJU5128H30TW5qcMu0z2NJmmlHNNH0GFUbNqAmLT3f+m/vb/6CE/Dwjo65mKBS6BPgycBPwkf7FEeBXwCETG9rOTYEWTJkBnEjMdv13FOPHlhY+TRszAxhgWVGI6UY9H6m8NGl5KuP9j1Reyoqeh/jhrAdGNeYfi+PLL0h724NLTqWivWbcrzUVDDQXUt1sCvyC+hwpCC6EIOCDdVsBj81uEkIQOMS9HL+1XnLQYm9korhJtQ5C5IAAnCW9bWu7RPPG1zUuBiwgvC7yJyI0DemxQZxEHCc/BWAfbibvm31PESo/f5RtY/iEnyKtlGZrEwsKvGFp40X2WSA485DU7Q2/VsB5068EoM63C//rujO+LlXHbkD8HWBz7D1KtAq+VXcr32w4kUuqf8Wm2Brei77O2ZXfiHeS9y0Osahwf4r1cmZ1LuKwkjPQxrzm5/BFTzFlXLXp9PjjgXN2S2w9MDgQAUALLC/7FA91/CVp24nGnc2W4AEsdBwxeK1eF3lzxH19ujuL05/Dlk/5g1A+tRny6Os2L62RnDNCjbc2e1tcw1gffYffbb1s2DaJv+eJYKQEqFQitKdpTL14W/dGnu++b8Tdhoq/AD9runjYsjtafppy/6vr/kmRXjZs+f3tf2CWf9GIr6vITTLNNfoKcGw4HF4fCoUu71+2GlBnxgTjF4UUitHnw7+zweHEfZUCvCM4OPh1g6g5dgf7gOLlHFC8PO1jn1z+mR0SfxXe5sxDdO590WHPo7MdyXCqbr+dfR6zUllzZQ0pQQqJ5vHOvp7FInB+I7c7IqJ/psLYgo93EJqBdDycASxBG6XISi5iMzh1eo/Cw2iKfUCNP7XbmClj6MKHXysA4MMVymM/Fb1RqCoTFBWMff0YEH/Prrw85frEOgcwaP2wf9FyNKHFBbX6wEIOKjll2P7FejkAR5R+ZNi6VGyOrU1rO4UC3KnojnTiViMXTP8OuxTsg0/4ico+2qyt/GLL5+PbX77xhEkRgW1stIRutIZGj3+woMhuwYNH3LekUNDdBxWq9tiU0d4teeFdh+VD+s3lelWWIspd/rvCoa5y5PV9TjeLC/en22lPEn/r/Qv5YvUvcbB5tusejig9M75uIAtXCIEjnbhVVGIGriMdBAJTRvGJwLD2cmLtJYnj1njoX9bjdKChEdCCtFlbKTOqaDYbEGi029uo8c1DFz5MGaVIK8WUMQq1YmxpIZFoaMRkFBszbkvVabew1dyAJnQKtWKCWgnTjXoc7Hh28MAsUVuaNJrvU6pXUqpXsjn2Ht12G9N99UjpMM2opqmpiZIZBVT6asf/5STgSIc+p5sivTTlekvG+HbDqQB8b/PHRjxOQ+xdzP7BeCH6rclyOVtFkbEAXAI09D8e+JX5AG+ZYOYB6YgA1eXqx7ejONLGr+v0TEL/P/HGNlVIj2eK5dMZO2+m4B//k+yZ7UBSIKXEZ0AkjYGNqUJKEMLxfHaopoGZpYTQUo9lk2eKQCRMe8sNhNDjBUu8iJQgPBzfeJBSxjt1L/c8wmOd/xhRoLETpln+eNZwWyWFy9PvOGnP9vh+/T3DOtaJCCH48ayHEELwt+bvsLLvBQCWl39qwuJNZKZ/7qQcV5E/2NJmfmBPzqj4En/cdnmSz/TS4OAE1EJRTKHfTZ45pPh0nuu+B4Auu5USvSK+3cA138HiV1suYZeCZZxc7mbLaULjpe4HOaA42ct6GFImDXa2Wk3857BXOY7dALdOyEj0RiXvNcEBJfnUKvY2qzdJHn51uACsGB9L5/Sf+ykGqO9t+y3nTv8WZ1Z8meVlnySolSbpGjrGsD6ylpRNr+EXBcOOO/B7S7UOhtRh6q9FMbBsYGASYLqvDoBa/wIAahg+AB3on96Z5PNNso3EdK0ufqykOBP6OQOJYLrQmRtYGl8+J7Bk2H5+MXHiL7if10jiL7iWFANtr4jTQ0AEEUIk1S86sPgkGqJruLJfKA5pD2A7bl9JkbtkKgA/BVwB/CBh2ZeAJyYsIsWoJF5mq8pUw2FHsbHw6TqmdxPAMiIXCk94XaROl+mlgsX13vy8n3rb4aU1kuOXeSc+2f+/189RLYsZwLmOJrSkDIxcQB8ybddrODL/LCASObzkzPhU7VSY0oz7x+ZydvxU8MJqyVmHj73dQDb1aAx81p+o+i6v9jyGLa2kDvREsrL3BU4s//SkHFuRH3yr4ST2CB5OlW8WX6z+JT9s/Dj7BI9JEnUTGRA1Tq/4PJdvPIFrN58DQJlexbfqbhlWqHCLuZ5nuv6dtGxhwX6UG+lnh2r9QtFAG9cepbhoTYXg7fWSAxamfXgcKTGt1B7firF5ZqU7su9IiabuJeMj4XN79LWRZyHvV3Q8M31zAFLaCii8R4E2WAhx6ID8e5HXuHHbFdT5dkHXwHbc7E9F7pKpfn8J8OFQKLQeKAmFQu8CHwOGm7sodphUQplIWq/YURxp49OMrHl+TgZeF2C8LgBmwvZOb37Ws6oEpx/kreFZxyFnPIBtJQCPi9zMANY8PSjlSNA8LFDvKIeXnoElR55ENjANVJE9lhUdy/7FJ4y94Tjx8u9P4R2Wl7kZ6GXGdI4tPZdup4OTpw33uBzKdbMf5hu1fwWgw26OZ7edU3lFfJtLZrqFcmt88wHXVqLLbskovsS27W6FB2Pj2kE81XnXsG1nTRdYaXQ8Vm50uPRGk0tvNPnqTRZX/NWKP//tfy26I9LzbX6vsLn/61zdoD6vcZNwru01v/98TyGmmzKGIfxTFZViktmlYB+um/0wQb00LgArcpuMMoDD4XBTKBTaH9gfmINrB/FSOBxWp8IksCG2ctT1+SOjZQ8HGw09b7ofhvD3F80JYDsSXXn0TCrzZ3rz87VtqJ8uWNvonTPbtCWa8H4GsK4JnHwaEZpCBFruCcAIpIdPSZnnGcADjFRRe7RK24pBbrg4dz+jvYqOwpa2qpmgGBG/KEyaav1Y5z8y2r/SqOG62Q8nTW3eu+holgYPpd3aRpWvnutmP0yn1cKPGy/AJwKEO27hwhnXpv0aAxm/PX/7G2dWfJLnT3Wv2/9tv5FDSk5Puo4VFQhefFdy9hEjH2/tZocbH7bZfY5gz3kaJQXQ0Qu3P+Vmsq5tlFx18/imLx61h8bsKsHCOsH2TolPF3yw1SH8moPtQHd/DfL9dxU4EnQN3t0k2bVO0NkLu9YKSoOC2/5ns7hesMdcQYFPYNpQUwGlQUHMhKIC9x4W8IGuu4kAMQtMSyIEmBb4DOiLuTqidCDgd2diCTHYHrMcMDR4/E03xoHC3Vd81K3h8vwqh2P31vHp7mv1xaAnAt0RSTAwKPp+dvnw/p4agBofC2s1pG2nnJnTEHs3CxEpJpvZ/sUYOljerZusSJNMLSAIh8MSeKn/n2ISUVUXJx9b2iP64OUiRr+B/XNvG9z9vOOpTmE+Zim0dcP0bAeRAsuBoA9WrHF45FVXkJs1XdDWI+nug+mlUBYUvL8l+TvRNVhQI9iwTRI1Ux15OJognkFfWeKODBcXwpY2t5EQDLgFigCOP9n7AnDi+1Gkh5QSIUR/Ebjc+vA0NKSHM2x3BgH4lPLPYsroCAKwyiTKd/wiQJfdQrkxI9uhKDyIlJJDS05LWra44IBx1dk4bdrnqTRqWVy4PwA+4afKVx9fX2pU8sPZ/8V0ovyp+VsZHXvfouPY9NLd2G2vEHntMTj12Hi793dbL+OSmb8ats+lN47d0Pr08cld9QMXubOoYpZk03bJui0Snw7TigWbtku2tkveXD/6PePJt9IbqF2xNvk4L/c/X7N5cPnqTZLVmzK5R1UBE+O79+M7B4/zwrtjH7OqTHDtHRY3XOztmWi5gK4Dpgm+4fft2f7FUx+QYgoQGLpQGcB5wJgCcCgUOiIcDj/V//iYkbYLh8OPT2RgCmiMvT9smRzhsWJ8DGQA5wt+rQBLmhQXCBbUeEtoc6cyZzuKiWWeRzOATQuMoKCte3BZw/bBK8b2ztT2FbaT3LBPh0SxtKXL/dveM7hsQPwFKPBLzxeBy+b0ply8pg8I5rpwfUNljhUsE0LzvAewlpNnRvr4hB/TiVKoFQ9bpzKA858Oezvro++wtxKAFSloMtfxdOe/WV5+YXzZp2Z8f1zHOrTk9LS282mBsTdKsY9h6WiLF1O4x6lIeriiYTkAhf0+5umwuF5QVACGDmcfMXI33W8I5s8UzJ85uGzP4bWsRqWhWeJISW2FwGdMTHt2YEBYSontuG0qiZsQ0BuBhs3bqKmZQWkQ+qL92cH9zULbcbeLWVDefzuw7X6xUbpZwZl6wQ/EM9YyRWa0d0ukZSH8aoB2Z8HGQtdUBnA+kE4G8G+B3fsf/2mEbSQwf0IiUsRJlQE8cLtypPR4Hl1uYEsLXeh581nqGNhY3PKEzX67eutdOf1VQ3MtQ3A0vPUJDzIwXe6KjxhUT/NOlC90OZ5vdBu68rfKBE0btIVzLSBy6/etoXn3h9yPx8PbYXwigEmMqNNHu91MtW92fJ0poxiq3Eje89/2m9i76Ohsh6HwIDEZ4YKqa6b8dY8o+QiPd9zGMWXnpL3P80s+4JBnKxC6zmOdt8aX7154yLBth87Qy4Zt26wqwUTfYQbaeEIIjP78GgH4DfAXQ2+JzfRSdxv/EBUi1ZVeG9hmnGEObXPWT4fLbrISPv/carN4BdMCaZpgDJeSxrKwVOQmW2IfUKu7fUxFbjOmABwOh3dPeJzh2KJisuiNulOrFTuGg51XnUtdGNjS4vhl3suyHPARU/eNyceyXSGzstRb0pFEej7jPpuj2976ttJDCFcwN/QcLQKHtzOAgaTCK/nA0EGCAe/6TbE1hDtu5nPV18fXWTKGTyuY6hAVU8gugX14tuvubIeh8CgN0XeT/H+niqe63OJtx5Sdw4boStZH3+HI0o/G1zsj3etsGzSN+YE9KdLLOLb0XNZGXh3z9VTNjqlh0/bBxz12B2/1PcPx5Z/IXkA5itFvASFSWEDM9S+d+oAUk069fyF6H1i2JDd7LIoB0lKJQqHQzLG3Ukw0qTKpPtjqVnyNxKDAr358O4ojbTSRsRW2Z9GFgSVNHn3NeyKM4/QXdsijm4bEmwUkTEvi8+BpLXE8//3rupuJkw28dyaNjSYG9UktBzOAczFrOd/wCT+mjPGX5qvosTuS1r3a+1heDdIqhrNb8KBsh6DwMEGthOnG1AvASwoHz8vfbr2UB9pv4ubm78WXPT5CITpHSJCSz1b/lPOmX0m1bw4xGZn0eBXpce35buPYsiURp4dDik8bYw/FUA5cKDhgoYY0TWUBsRMhkZ4sAtdrd+ZlnaHJJF2JYA1QOvAkFAr9OxwOnzE5ISkGEELDkQ6aGNTpl9QLIias3yr5YKvDAQu9l+mZS9jSRvd4RmImDFhAeLGIle242YL5RKL45SUGKit7DYn3i8ANeABLKWntgoqSwSmEO+IbJ6XE7M/Mlgl+2G98INl7fu5exzVt0Ac6Nz2AhceLwEkiPovSPPYsNISfX235IuBaPiSyR+Fhefu+FYMcXqK6FIrUNMTeZW5g6jMKP1n1Xb618RS2mRvjy97ue5Zbtl/L6dM+zy6BvYftU9degaNZyFgsvkwTOk6O3RfzmaICweFLNZo7gOIIxXp5tkPKOcqKBeXFAmv7cAuINmsrm2NrsxSZYjIRiEmzyUv0DgfotFtosZqo9+/KmsjL3Lw9M9/3XQuWcUbFlynVKzCEnwfabuJ/XXcCsLTwEI4o/QiddguLCvbHLwqIyF4KRHAwHhy67XaCemn/7EaJI210YcRnstqYPNd1L8uKjqPTbuHW7T9ku7Up7RhrfPP5Ss3vMnpfE0W6EsHQ1vdRExyHIgWPdtxMmT6dA4qXx5e9tMbhnhfdX96XT5t44TLq9PJC93+TpjnlMw42mtDzJv9LFz7XAmIf7wlK7jRxQXTsTXMGQwPTgyePaYPPg+MajnQQwnvnZiK65s7gvOymoRWlJ65y9VAGBOBclLk04Wb3A2jo2HgsNWAMNDRsL3/wUvLHE57ly04rpXpltqOZEB7rvJXjyy+IP9cTZuEMPX+8XjRSMTE83fVvTiy/CF3odNvtbIqtYZeCvTGEyi7b2dgUXUND7F0OLjkVgCpfPYV6+kXUJhIbk581XcxRpWfxZOcdALzV+zRv9T6dcvvF2+rp0NaDNTltBcXEMHOaYEubpCTYoe4xGXL7UxYvr5WcuK/uZgAPsYCIOn3sETw8S9EpJhtDg77Y2Nu927eC13ue4Kzp3wDAlDFsaRLoF1nf6nsavyjgsY5/sDG2aofjOqb03KRZGWsjr3JdY2prl3f6nuOdvud2+DUH+G/7jePaL5uzD9MVgD0ocQxHCLEc+AWgAzdJKX+c5ZB2iCNLPsq/Wm9g/6IT4hkwHzlM51f3uR2k6vKJ77VGZR9Pdd610wjAtjSTOp+5jiEMTMd0vXY99qv1qii5I+g6RD32OQPxysteIxcygA0teXR7n/mCdzdLevtHLo7cXaOmQvDKew4nLNPY3gnrtjjYjntNrp8u6OqD7j7J9k7XTqKyRLDbbI3yYoiZ7m9T4CZOeNGuJRM0MXit0YSeexnAXvcAlhLd0TBlGi3uHOHo0rOTnic2gm1pTnU4Cg+wrOg4eux2So1Kvr/5rGHrl5ddyOGlH0bHN66M8MQMTM2jg5BSStcn36PxTRXbrI2sj77DwSWnsim2FlPG8JGdgYCv1dzE9U0XESo7j+Vln8LG4tsNp6Dj4wez7hu2fXdhlK21UeT6ZAF4Q/SdqQpZkQb10+Gt9ZL6mR151QecCrr6BtvIqSwgIrJHZVXnKUIIhOZg2WPfo57s/Cfrom/y6sbH0jq2XxRy0YwfYUuTat8cOu0WZvrmscVcz0zf3Hh2cGKW8NC2wAlDvLyllDg4dNktFOvTMMRwO7Ghx5RIYrIvLlQnvvfEWaBSSkwZxa8V7NDs0GyR7lXPCIVCRzOYoDT0OeFw+PGJDi4ThBA68BsgBGwCVggh7pVS5mwpyqPKzuJ/XXfS53QR1F0HjvkzNa49X9AXg8LAxJ9sjrTpdton/LhexZJmXvkLahj0xCwK/NDjsVTbzl5JS5dEn5HtSCYOQx/MfvQSkuE3Ri/gegB7u3OraQJHwvHLNE7cd3DEorGxkdra2vjzAxe572NBzeDjtBhSz+q5VQ4BH5xyQG6OjgghBgVgNOxJypKeLDShIb33UxnEkUR9Fs1mA5VGTbajmRCGFoJMHBRyciyDXDExLCzYlw67mVIjdZb7Qx1/5qGOP09xVBPAxrE3yQUumvEjDPyUGdNpNhtot5v5d+svJuz4J5Z/mgfb/xR/vrjgALabm/nVli8SKjsfPUXHfSqoMGoJlV0Qz0Qf6C8sKtwvZRvrg2nb2FYcRa5NHsiaHdht8oNVpM30UkFxoSSgFRHUspNdnqvUTxes3Njf6DOHW0BEnF4KteIsRKaYbHR86Lo9TAB2pFvfJfGauC76JjoG502/kue67+VTVd9HFwaOtBFoY/ZRi/QyAGr88+LLBvZJt38rhEBHp9wYWXgYekyBoEAUjbrtwGO/KMgoHi+RrgC8DUhsebUMeS6B+RMV1Dg5AHhPSrkOQAhxO3A6kLMCcFAr4cyKrxCTEYKDFswUFQiKJqkotiVNpunVk3NwD2JhZq1hORnowiBmR/AbghVrbY5YqlFU4I0Lk5Qwb6bIl/4QAIYmPJdp7WVyIQN4qnEkPPaGw0n7eVsYHwldSywCp+PI3BLwBN72AEY6aAhe73mSxYUHZDuaHcYtvJp8rs9JEEeyUexJkX3K9Co2RFcxK7CY48rOJ1R2Xv+5MjhYEHX6WBN5mTZrKyu6H8bB5qTyi+h1upjlX0S73cw0oxoNjYbYagIiSJWvnml6NT4tAEBD9F0e67iVVZEXR42nSCuj2jeHjbHVICX1gYX4RSENsdXU+Xahz+mmQCtm14JllBtVtFlbKNLL6bRbabe20mZtpTQ2Ewot9ggexp0tP2NZ0XH0Ol1sMzcwt2B3NHRm+uayZ/AIWqwmepx2Zhiz2RRbS5/TRYFWRFAr5Z2+5yjRpxHUSvsLivWxpu+VuJ/hRFOiV9BltyYtu2nbNyfltQZIFH8B/FoBXXYb4GZaZSsrWhc6x5V9fNjyPqcr5fZ+2d+fGGIB8UzXv4dlpymyR4EPIrGBWaC5OfieLfSEJryMRhGBQNJ6S0bxiYopjkoxFejCQNNNTHtQN2m1tsStFpYWHsoxpWczs1+0/eHs/wKwW/Dg+Paa+r15grQE4HA4PHeS45gI6oCGhOebgAMTNxBCfAb4DMAXvvAFGhsbpy66cdLj9LFJNNArpiararvcjLD1nPhsJoJWZzvbRQtdXT4aG3uzHc4O0ybb2NbXga+rDU0W8NrqDubPyGzqcGtr69gbjYMXVxUxq8Kka3oXjb35cX51dQbo8vfQaHnr/XR3BT15Pnc4HWzp2ppyGo6X6Oxyp/4kfoaT9btwvYVh46YtRHoLaGzsm6TXmRw6OgI06SZ9QYdWp43Vzks5df9olW1Yfb2ejbmr02ButIqKglmejTGT34YlTXpkH409qd9Lrbk46X122flzv1CMjC6Lec95m3UdK3lHPsXSnmNSblfJAipZwC4c4i5oh2mAA5RShw3YwEzcQQULaKZl8HUo4Xg+x/HG58YOyoZ4svrAuJaW8NgGetyH1SwetntrRysVegXE4DP6ryCSsLJv8O/2zlYgQJBquolSzmzKEzZdxilJxzUoZW9OYm/jpLHfw3iZwlnxQ6fzOtJmReS/bI00UctCOrraPXcNOMr6RMrrsehvbne2tNCVsH4mCzx7/Z5qJq8tlRkdnUEKWpuxhYEQ6rtJhy67C7q7OHUfm8bGKLKxEfx+RMK5vc3ZghBBUJ9pxnjltzESPU4P22ONbG+ZTmOje0N72XkAgErqeafvWd7pexaAI7Vz1TXPw+xUxjdSyj8CfwS45pprZOJ0Xq/S3ltDqVFKrX98sfY53fhFQdoeR06sh9YtyVOd85n3OoPUF89i7ZYCamvLsx3ODiNiUdrbTCr0aRwzHf76qJ8bLs5cbJuM739+p8OiesHLVgm15flxfm2LOHQVFlFb4633U9Jke/J8Lukoora01vMCcEmTjYBhn+HkXBfdqaKVVTOZ3u1QWzttEl5j8mjscaiqElSVCd5qfwR/V0FO3T+ikVY6gt6NuXhdDwZF+Eo0asu8GSOk/9uIOD1M655GbWny9rtuW8Ynq75LuOMWaspq4mLQixvv4Yzaz094vArv0drUwFZzAx+t+Cq1xd491zPBq9cVr/PM9g4KC/00tqxBGia1NZdkO6RBNsKi2j1STvstXNnLjOY+SgoLKU347pd07M+M0irPt32mCi/8LkqabEqnlVDjr6HKl/14cgF/czGPvVvEzy8yEELQV1yMXlWFP+H7bOgOUlcwi3KjKouR5i5e+G2MREP3dKq1Clp7yqitdbO8X274L1fX/ZMivYzXeh7n9pbrAGjyv8tJM9SsB6+STwLwZmBWwvP6/mU5jV8rJOZExt5wBK7ZdCYCwY9nPwTAm71Pcev2H1CmV7FH8DCklCwJHshs/xICWiGmE2W2f8lEhe95LGliCF/eTEr3CT8dfSaBKCyY6b6rSExS4M/+O4yYkoBPIC0PT7fOEEP3XrE9L+MgPe8BDNAbcc/XqeCTx+n89VGbD7ZIfHr2f6eZoiUUnDy+7BMcX5ZbDT7vewA7+PCzIZazblZJ2NJOabt00YwfAfBk5x082XkH181+GIA9g0dMaXyK7LHV3ADAfsXHZzkSRbYp0st5pOPvAPSOYLeQLa6qu2NEz0cZi7Hv7S3IvZOLQwS0QmIyogRgD9HVCzNGuB8pUtPZKwBnsBBWSguIGD4RSLG3ItfRMRC6idk/Kf3xjtuIyt64X+8+RcewxfyA9yNvsLz8wixGqhiLfBKAVwC7CiHm4Qq/ZwPnZjekHccvCnao8XNM6Tk80XkHl288IWl5h93MM13/AeDZ7ruT1k036og5EbZbm6n1Lxj3a+cCljTR8bF+a275Vo6E689jUVUGM8rdG/Q3/5apfUgVA1mJE8nCOsHhS0H0eVltyQwjwf9UMTYSiZYDAvDaRof66VNznhr9U4z/8qjN+UfnnjeWJgYLIeZiIQSBhuN1D2BNo863S7YjmRBsTHTGPs9brCZe6n6AKmPWmNsqFIr8IiAKKdUrOLr0LO5s/Vm2w0miWC8fcV1ZX5DCdpvYihVJy/2ikKjTpwqOeYiYJbEwhxUlVYyMwADNAlyBV0aj4PcnbTOQWKXIP3RhgDCxHbhl+7W81fs0ewQPT9rmxPJPZyk6RSbkjQAspbSEEF8EHsZ17fqzlPKdLIe1w/hFAe2yedz7CwSS5JHogcyaRBzp8P3NH6PX6aLbbueqTadTrJVzVf0d437tXOCt3qc5vvwCZs/IPeEiFbow6IpaDDh+fORQjbuedUbfaYpYs1mia4I3e58iVH5+tsOZEHR9UPxSpIGUOSESbm2HE6eoKNtuswY/DyMH+yGayO0seA0NiYffgJRumnWeMFIG8FD+r+lzVBq17FZ48JjbKvKDVG1Txc7LvMAe7FsU8pwAPBpnHvsHmr5zGP4L909a7hMBYnL8szkVE09lqcCRthIrMyAWMzh8j4ROj20jjGQpSQnA+YshfNj9Jvirel8AXB1FkXtkJACHQqFfAreHw+HnEpYdAnwsHA5/ZYJjyxgp5QPAA9mOYyLxawXEnPSKAv1qyyVcMvNX/L35e1xQdTWt1hbe7jfjhtEb15rQ+E79XQDxbOFup50fbP44uxceysLCZdjSItxxC7sVHsRM31y6nQ46rGZ0YVCkldFkrmP34KH8r/MuSvRpVBg1AKzpe4X9i0+g3drGVnMDXU4bfU43rVYTAB+a9kViMoKGTlArwcGhSCvlqa5/IRBY0mSP4GFUGDXY0iImI3TZLejCR1ArZau5nlK9kv+238jCgn0JaEEWBPbi2a67mRvYnZm+uWyMrWafoqMB+Gvzd6jz70qVUcc2ayPgVrK3HVegzGV0fPSZZlwvOHQ3nYOXaGgZiG6NjZPnAW1Li737v4d8QNfAmZr6jIopZo85U3MtEELEbSB6olPykhOKyHEBWAiB9HAGsHQcEMLbInUGjFV1/ZLqX/GrrZcQkxGazHUsKzp2CqNTKBRe4fHO2zi+/IJsh5ERorAQ2dk5bLlfFGDugJ2fYhKQrlipjXI/UgyytU3y5jqNa45JEIAtC4YIwI60VVZ1nqLjw8bt9FqYfGXm7+mwt2c5KsV4yDQD+Bzga0OWvQLcDXxlAuJRDMEvCtIaNY44PWyKraHN2sY7fc9y6/Yf8GbvU8zyL+bj06/k1u3Xpv2aP5h1H8923cMD7TfRaW/nue57eK77nvj6LeYHI+77cs8jKZff0/beiPvc3fbrMWPaGFs15jYAayKvAIMjUs3Wpvi6N3qfjD/eHFvL5tja+PMCH0RNCOa4bZEhDAJ+k9LCQfEqE/F3sok4PRRoRdkOY8LwqgewB0PKKb52hoE2hYNBe83TOH6ZZNYU2U5MJJo2UMU992IH1wLC0x7AUroqex7wQNtNtNlbmWHMHnGbEr0i6XnE6Z3ssBQKhcd4uuvf8dmL+xaFshxN+ohAgNKvfx1pJtuoddjNtFpN1AcWZikyxVCEAAcbA5Wtmg4/vstCqzdAG7RMlJY1LANYkhsz/RSZowsDW7rXtqNKP0aNfx41zMtyVIrxkKkALGGYgaOeYpligvAJP5aMjbldj90BwK+2fBFwi70BzPTNZc/g4ewx66G0X9MQfo4s/ShHln50HBHnJj4D19Q8xwVgXfiwpDV0QNYzmDKGT/jH3jBHMHSBo0yA8466yqlvvJ64b25mTCR6AOcinvcAdiRC0xA5KrAn8r+uOwE4oPikEbcpM6ZzZMlH49vOCiyaktgUCoV3mOVfyPvRNwD4WOXQvCNvU3rJJXT8LNm2YlZgMR3W+O38FJODrTKA00L293OmlxhYMmHaY4oMYEX+YggDW1pI4MnOfyq/3xwmU+H2aeDaUCikAfT/vaZ/uWIScAW9sQtybTHXc/70q+lxOpKWN8RWA7lZnGcq8ekCMw/qwOkYrv+SR4dkLBnDyCcB2KNF4NSvXTFV5LwHsPB4BnC/BUSuIxMulGMVghyYyQOwqGD/UbZUKBT5yIHFJzHdqM92GONnyDU7IAqJyvTs/BRThyUt9P5cuPbuHG7ITDLdEZgzQyAdH06CACxTeADnw2C1IjUDmtQHWyTHlJ6T7XAUO0CmMtGXgeOAplAo9BLQCISASyY6MIWLjjvaMhZbzfUUakWUaMnTJ7eY6ycpsvwingGc4wgh2KK/gM+jA7JmvgnAOjieVo8UislF03JbABZ42wM4X4rA9TqDvphjdRCbzHXxx5rI/feuUCgyo8o3i8NKPpTtMCYMXRi81vNYtsNQpEAIQVu35Lu3WWpG3wh09cKCGsGsSgOL0TOA86VegWI4Bj5sTGbX9PG/zjuzHY5iB8hIJgqHw5tCodAy4ABgFtAAvBQOh3N4Aqi3STdzd0N0FXsVHU1MRris5o+80h3GlFHWRd+c5Ajzg45eiaFDTUXui3kVsWWezgDOJwsIXXcT9H7R9AW+XPObbIejUEw5mgA7h1sAGrq3OyyOA5qGgxMv0DoaJ5ZfyIPtf56UUMr1GVQYM1kXfZODi0/l+e772KVgH5qtzQSbiqj3L8LBpkSvICAK2RBdya4Fy9hubeb57vvix1lUuN+oryPQ4v6fCoVi56PWv4Ba/4JshzFhTNOrVbEkDzIwGNnQ7LYBOnuhPH/KlEwYKxscigtg3jx/3AMW+j2AdWWhsbOg91tAWKKbk6d9JtvhKHaAMQXgUCh0RDgcfqr/8TEJq1qAIHBUKBQiHA4/PkkxKtJgdeQlPql/j6jsZYYxm6PLzkbHwK8VZDu0nKCuQnhZAsgIIf1TWsAqE5rMdfmVAayBIyWN5shFDhWKfEbkuAWE1zOAnZ4etK4uHu/8R1rbT5b4C9Bub6Pd3gYQF3Tfi7wGQIcJTSkKxK6OvBR/PNM3jy3mB8z2Lxn1der8u7CoYD8eS/M9KxQKhZcRQrB74WHZDkORQOJd/y+Puh6A3/2HxdXnGBQVgN/wZj9qqumJSP67wuErp+v0CgNHJvglWhb4kovoKQuI/MWSJo2x9zHFzGEFexW5RToZwL8Fdu9//KcRtpHA/AmJSJExTTF3uqQQgjK9CiEEhaI4y1HlFn6fO8VFMbk0xt5nr+CR2Q5jwtA1t4iEnnE9TYUiP9CEN32w00UIDcfD/RUR8CPKygC4rOaP9NpdTDNmUKJXxDNldTFkCqac2ircjY2N1NbWprXtNQ1njtlBjMkIewaPVAKwQqHIGx7rvJXjyy/IdhiKEfjaGQbX/9vie7e5FgehvTXCrztcdLzOTY/YXHS8zoxygd8HG7dJNAFvrnfYtF3S2Jrl4KeAmgrBB6aBRUIGsG0jhlhUeXpGlWKHKNLLKDOqaBW9FIhgtsNR7ABjqhbhcHj3hMfzJjccxXh4P/IGZ1Z8BYBv1t6c3WByFClh/TbJ0jnD19mORPdoRm1qvBtrjX8+FUZNtsOYMDQN1hUoHyTFzoumuS4FuYqG5ukMYBwJhsEPZz2ALnTwDd1guN+Pl4u+OjiIMaqum05UzV5SKBQ5i7NlC9JxholjZp7ZoOUyA3dJx5HMmSGoqxT89EKDr//ZFYDDr7sNm5sesZP+ZovyImjvgeICOH6ZxhvrJEfuoeHToaPXnY3l090mQ3OHpDQo6OyVOBJsGwoD7nohoLJUYNvQF4OWLkl1uWBjs2TmNEHA585uLPS765fMEvj6s6ENa+y6RCoDOH8x8LExupqoXgCUZTscxQ6QUdpaKBT6Wjgcvj7F8svC4fDPJy4sRSaU6BVU+1zl0ssdPy9TGhRUliQva+2SfP9290Z3w8XDet2KcWBJM68sIHSPei17WM5S5BmaEDldOEV4XgB2M2z0MUTTXEHioI3RQQzqpfhFAf+vWjUrFQpF7tFz++2UfOlLGPX18WV7B4/m/cgbLC7cP4uRKRKRSDp64aBFbmPe0EW8v9cblURNt51fGhTELNkvoHqjn3340ok93r67jL2NhoFFbHCBRz4LxdQQ1EuoMGbSJSL4xIxsh6PYATKVL64eYfmVOxqIYmxu2/6jlMujso+AplLxd4SAD6KWKwL0RiWX3mjGxV+AH91p4uSy0aVHyLcicEJAkTWHhQX78oetX892OArFlKPluAewJjSkh/sw0nbyqsiKg4MYo+n5xepfUqyXMzcwwT1chUKhmCJkb7Kv3L5FIR7vULY2XsHoL+Lc1ScpLhy+PhgQTCsWlAbdBoLfEJ4Rf7OFJnRsOUYm9E7+GeUzOj4caaPLAor00myHo9gB0soATij+podCoaNJnmM+H+ia6MAUg0gkUaeX13uf5By+OWx9r9NBUCtJsaciXQI+eK9RcuTusLFZMr0UzjlSZ/5MjUtvNNnWDl/9k8XPLzI83wDwsv+SKWPoIn+yqTUhMGQRARFkTeRp+pweCrXslxD29hmqyCdy3QJCoOF4OgPYcT/kPEFKB02M/n7GWq9QKBReJ7piBb6FC+PPFxTsxZ+av5XFiBSJbG2XlNVBJObaHSjGRhcGzhgWEDldFEIxKkIIEAKHWF7N5t0ZSdcCYqD4WwGQWGJaAluASyYyKEUy70ZWENBSDE/282D7nzmq9KwpjCj/0DVBzTRXNvtgq+T4fVzxF2DfXQSvvDeQHQxFyppw3DjSzpupzAPs3f5j9MrboA+e67qHY8vOzXZInsXLgxOK8ZHrGcBuITUPvwHbzi8BOI0MYIVCochlyn/wA5zt25OW6cJQ/qgeYk6VoA1XAK4sVd9LOujoOGTXC1mRZaTEFvk1m3dnJC0BeKD4WygU+ns4HFYlTKeYTbE1FGrF2Q4j79nU4ooAj7zq8K2PDf40zjxU5+DFkp4ItHV7XwBev1XCkmxHsfOgYfB4520APNLxNyUAj4Lq/OQfItcFYCGwBTzzjs1hSz04OOU4sJNZQCgUCkUuEzjsMGKvvTZs+RElH+Gd3udYGjwkC1EpEgn4BbYDqxocjtg9f+6xk4lrATFGBrAi75HCW/V8HCnZ1g4zp6k+ZrpkVAROib/ZocKowS8KmOVfPGxdi9WUhYjyk9lVAseRzJwGVWWDF5FCv2BBjeDltQ6vve9QP33shoJlSzZtl8ytnvqO7rxq714AlQCoUOQXmsjtGX8aGrbQuO8lx5MCsHTyKwMYlMWDQqHIb4Suu7M3hvC/rjuhC66b/XAWolIk4uv3AP5gq+TMQ7MdTW6gY2AnZgDncuNPMW4cYmgyIwlxTKSUOBLea5I8+LLDhm2pz62zj9CpKoNnVzq8+n7yNp8+Xmf3Oap9mQ4Zf3uhUCgEnANUhcPhU0Oh0H5AaTgcfnzCo1MA8NWaP3LjtitSZgH/pPGTUx9QnvLEmw4Pv+owc1rq9bOqBLc+aSP7t02PqZ0qc/SeGp0Va6f0NTNhfeydbIcwaZxV+Q3W9L2c7TAUiiklHzyAbQExy22ADni8Jz7OKraD0LwnTCsUCoViBHw+pGlmOwrFKPgM2GyvZO/5GobugXt9DqAJHSexCJwX2kiKKUfoMaTthxRN0wEh13bg8TccTljmCrJPv+Pw9gbJ50824tsltrcvu2l4ZvnXzzD46b+Tl9/+VLKucuVZBlvaJFvaJH96xGao7nLmoRqH7gMrXwAAUS5JREFU7TY1bWjbkVzzD4vuPvf5t88y+MEdI2fMTyuGq8/JTl2kjATgUCh0CfBl4CbgzP7FfcAvATWfZZIwhJ9uu4Na//SU6w8qPmWKI8pPYmPMaqkuFxyyRIuLvwcsFLy0xlujn0+86TBtr7nZDmNE5vrzs6r7mRWXMjewlBazMduhKBRTiusB7K3rYCZoaDj9jdBUDdDss5Tl+ovZDkKhUCgUaSIMA6zh95Mr627nwfY/pdhDMdX4DZhhK7+8TNDQsfFiO0kxlegamLYglSPmT/9t0dQ6+PzhV5MzRC69ceSBsd3nCA5dorF41mAW788vMuJCcVefJOCDzS2SOVUCTXOXV5YKls6BfRZofP/25PPzX886vLxWcvw+Gjc+nDopb3opbO+EAxcK/D5BoR82NktWb3L7NqcfpPHyWofNLe5s8b3mCSwbDl6i8eRbDo+/kToLZjTxF+DUA7KX3JFpBvBXgGPD4fD6UCh0ef+y1cCiCY1KMQxTRvCLwLDlx5Z+nOPLlTPHRPDziwy2dbgjMiPx0cN0PnrY4A/2nCNH3vaqW0y+f97Ujuz85n6Ldd0+HGmj5VmxNS9zQPFywDtFzrwRhWJnIOeLwPV7AC+uF6zeJJkzQxDwgWlBTYWgu0/y5vrkN1gadAcEZ5QL6isFLV2SWdMFf3l0eOPywEWCF9919y8phK6+wXUL6wQdPRKfIZhXLXh3k8O2Dgj4oLZC8MFWyVG8jsgzCwiFQqHIZ8QIGcAl+jSm6dVZiEgxFL8BtqXay5mgCyM5AzgBS5q8H3l9agNSTDlPdf2LBfoZRE23TTuUAfG3tgK+eobBV/sTK674qEF1uYgLwNeeb/DKew4xC+oqBeu3SU7cd7hukTgTr6TQfTyS1WVFieCGiwd1l4HM4g3bJDc+bBMMwCWnGlx3V7Iwu73T/fviGkmqK8I9LwwKvBubJRub3W0efCVZ+D3tQI2j98wN7SVTAbgEaOh/PPAJ+YDYhEWkSEmHvR2fCCQJe1JK5ak6gQghqC6fuONNtfgLsG6LxJhbRMTpIaiXTvnr7+wM/B43RFdyX9vvOaPiyxRpZcRkBEP4aLO2UaKXowsfXXYbRVopjeb7BLUS5gX25H+d/2Rx4QFUGjU0xtZhEaNIK8Mn/BTr0zCEn3ZrK5VGHTHZh0DDEP7460rUNUExteS+BYSOI2DZLhqfPXHHhNYbLk69/9lHpHuE4Q3Hzt+8xAt6cPxBeYzlZZ/KdggKhUIxuYyQAQywIbZqioNRpMLQwXE01WLOAB0dZwRrw16nk3+2/IyDik+e4qgUU8nhJWewrR0i/cqf7Ui+9if3WveNMw0qSuCqswf1j0RBdujzxOKLS2ZNfKxCuIJwa5fEb0Bxv4A8NKYB7IRsFl0b+8rgGau4cZCpAPwUcAXwg4RlXwKemLCIFCNSqJVgY6P1dxKjspeAlmL4RbHTsttsgVZdTpfTFheA261mNsfWUuWrx5EOhVoxujCwpEmf08Wm2Np4dnlQL2WN8yZ/2vQg51ddjSmj+EUhtrSo8tXRbG6iQCui1+nCED62xNZTbsyg2jcHW5r4RIBupw1HOhjCj18EMGWM13uf4ODiU7P50Uwpv9v6VSQOv9jy+Yz3fbjjrzv8+kfzwA4fQ6FIh5zPAEZgC4Hh1STbWAz0kmxHMWEcXXZ2tkNQKBSKSUUYBnIEAXhOYDdsaaOrWXpZRTdMpGOoDOAM0ISOLVOf126CmlcbUoqJpLlT8usnLaJDJjn85F/etAepKElPpE1H9E0kV8VfyFwAvgS4LxQKXQyUhEKhd4EuQJnQTgGFWlG/yOYH4L6237PNbOCI0o9kOTKFV/j08QYre4v4edNnALhk5q/51ZYvjutYv9t62USGxhOdt3Nc6XkTekyvckzpORxXdh6a0HCkg8RBF8mXW3e5RADddjtFellcmAeJ0f87H7qPe0y7vxiDw+BkDIHE4bbtP57stzduvGKRoZg4hMjtQtCa0LCFwDexBY0njOiKFYhPnZjtMBQKhUKRLqNkABdppTzYfhOnTPvsFAelSETTTRzbUBnAGaBjYI9gAWFLCw0doUTgvEYgKC6QbOwXf885Umfv+QK/4do7GGpcKyfIqMsTDoebQqHQ/sD+wBxcO4iXwuFwDk8AzR104Uu68L7c8whnV14+yh6KnZHdggfHHw+Iv9fNfjjt/RsbG6mtrZ3wuP7e/F16nI4JP65XGRgJd/8ObxAljpSXGpXxx4YY2Tpk8Jj6sGP0b0GRVo6u2l+KKSLXLSAA+kSAzl5vqtj+/fbLdggKhUKhyARdR9qphbJZ/kXc0/YbJQBnGcNn4lhTb9WXy2jCGNECwsJCINBTWFkp8otZ0wUrGW6l8IljdfaerzqguUBG31IoFPIDFwOfBE4FPg/8NRQK/X3iQ1MMxfXeSR5R3qfomCxFo/AyV9XdEX+cifg7mexddAybY+9lO4xJZSDDtSG2OmsxFIpSMpzFMmUof+L8I9ctIAD8OFSV5LiKrVAoFApPMDA1WFoWkaefTlo3K7CIo0rPykZYigSEZuI4PjUvLQM0tBGLwNnSpN1uZqu5YYqjUkw1mgY/v2h4DqkSf3OHTCc9/g3YC7gP2Drx4ShG4us1f2Zd9K24906P3cHiggOyHJXCqxTr5Z4RfgcoEMGsCqNTwYvdD+BgsybyStZikNK9OSsUU0E+CMCxlStpveZjbNqU2e+24OijiTzhlkDwLVmCuSp1cR//fvthzJ1L7113xZeVXXMNHddcQ+Dgg/HttRfdv/+9e5zdd8e/zz703HwzwTPPxFy9Gi48d5zvTKFQKBTZouu3v6Xz+uup27AhyS9Sz7j7rZhobEywfd71//cgo3me2tJE4mDjTR9YxcTg0/z02J057X+ryFwAXg7MC4fD7ZMQi2IUpvvq2BhbFReA2+1m9ggenuWoFIr0KdbL894DtsY/nyc6b6dYm5a1GByJsoBQTBm57gEMoM+bj+ZkPjthQPwFRhR/AWIvv0zs5ZeTlnVccw0A0eefJ/r884PHefttzLffBqD3X//KOCaFQqFQZJ/uP/wB2dfnPonFIBCIr3us81aOL78gS5EpACxp0tPro6ErxxswHsGtX8JOVfB7ZyQggrTKLdkOQ7GDZCoAbwQCY26lmBQ0jPjI2jZzIwVaUZYjUijSp8Y3nytqb852GJNKoVYMwCUzf5m1GKQSgBVTSD5kAfj23Ivg0XXU/+i+bIeSklXt+X3dVCgUinxjQPwtvvBCZF8fIkEArjJmYTpRfJrqUmdCl90GwAfRt3in91nOmf7NcR/LlFE2bvVz8X6qwZwJSYk8CaP/powB4BPqnM5nCrQiok5vtsNQ7CCZCsB/B+4JhUK/YIgFRDgcfnzColKkxBBGPANYIqn2zclyRApF+gghmGbMyHYYE05i7sBewSN4s/d/lGfxfUpA86oJsELhQaTQKP/aV7MdhkKhUCjyiJIvfQm9thYZiSQtr/bN4cpNp3nOqm0ysKVFj9NBiVYBgOwXDaWU9DpdRGQPK3ufp1gvp0gr48nOO/hY5deQSAzhIyCCdNjb+XfrL1gXfTP52M0251VdmVYcDdF3uaftt3xx5i8AsGQMx/LjUzXLMiKplkdCAkCj+T6gBOB8R+Lweu+TnMP4B18U2SdTAfiL/X9/OGS5BObveDiK0dATBOBnu+7m4hk/znJECoUikd2Dh2U7BNcDWOm/CkXaSNRvRqFQKBQTx/RbbqHgiCPo/tvfcDo60GfOjK87b/qVXNGwHEc6aCJ3M1AdaaMJHSklEoe3+57j1u3Xjr3jxtFX/6jx/JTLa3zz2Wpu4Gu1f6LDauYP277O5RtPQEPnohk/wsGmzr8rD7X/mWZzE+uib1KiVdDltA47liljXHJyAfMKcvfz9xKbY2sBVFZ7nqME/vwgIwE4HA7Pm6xAFGOj48PC9dgJaqUERDDLESkUCq+hPIAVisxQhRMVCoVCMZEUHHGE+0DTcNrbk9YNWCd9s+FEAD5Z9V3q/Yso0afxmy1f4YyKL1Hjn/y8Kkc6CARXNCwHyCgj+dWex7ij5SejbrOk4EBOmfZZivVyDOHjiY47aOtq4ZiZHyWolVColQDDraRsaaOhIYSIZwwP3abSqAHgoOJTeKH7fv647RspYxgq/j7bdQ+HlpyOJU2C/a+v2HHe7XsZnwjgVwJhXrNH8PCdYuZCvqPKkOYQbgawKwC3WVvywntRoch1hv4Kr6y7PStxDKDELIUiM1TWvEKhUCgmA624GGvjRgIHHpi0/Aez7kfH4IqG5fy1+TtJ6/5vy/8D4Oq6O+lzupjuq5uU2AYE6AEu33hCPLa/Nl/N2sirYx7j1PLPsV/x8WnVpQmVn09jbyPTfbWjbqeLQV+G0fq6A0LUCeWfpEAUYcoIpoxRrJen3L7d2saPGs93BWBMDOEfM2ZFekSl6wurMkQVCu+TkQAcCoW+N8KqKLAJeCgcDm8dYRvFDmIIH5F+4+2FBftlORqFQpGKEn1aVl9fiVkKRWYoCwiFQqFQTAbGvHnYrcMtCAzhA5Kzbu9s+RknlH2Su9t+zTt9z/G9zR+Nrzu29OMcX37BhMUVddwiddfU/4tCrTgu/gJ8u+GUlPscWvIhnu26m0tm/ppa3wLP2FcMZPIGRJAAI8+OLTdmcGzpxwFY2fs800ryry7JZJNUBG5gWUIxOFWgXqHwPplmAC8EPgy8BDQAs4ADgPuAU4HfhkKhM8Ph8EMTGqUCAF34sKWFlJLnu+/ltIr/l+2QFAqFx5DKAkKhyAiVNa9QKBSKScHvh1gsrU0/WukWI72gys0I/v6ms7mq/nYu33gCj3XeymOdt3JF7d+ZZlSPO5wH2m7if113Mtu/hGNKz6FQKwaSheg1fa8wv2CPlBmyp03L9b6nK1bW+3elcoxMZEV63N32awCOKT0ny5EoFIp0yLTLowFnh8Phw8Ph8LnhcPhw4GOAHQ6HDwI+D6jKZJOEjoGFyeu9T1DjX5DtcBQKhQdxpFRilkKRAdLDvxlHOkmVthUKhUKROwifD5mmADyUq+pdS7HrZj/MD2bdD8CPGy/g8o0nsLpvBZCcfTkW1zdexP+67gRgY2wVh5SclnK7hYX75q09wmOd/+DyjSfwbmSFqqUzDsQw4zt4o/dJwLXiUCgU3ifTDOATgKHDO/cDN/c/vgX41Y4GpUiNIXzY0uT2luv4xPTvZjschULhQSQqA1ihyAQpQfeoxipx0DIeq1coFAqFFxB+/7gF4EQM4eO62Q/Ta3fy3c0f5S/NV6bc7oLp32Gmfx7lehVt1lYCWiFBrYxvNZwU3+baWfdhyVg8+3dnokgro8fpYE3klSSvYcU46B98WFZ0HPsWHZflYBQKRbpkKgC/D/w/4NcJyz7XvxxgOtA7AXEpUuAWgbMA2C14UJajUSgUXkRK4VkxS6HwIg7eTbJ1lACsUCgUOYsIBCZEAB4gqJdy3eyHuXHbFRxQtJz3om8QEIU83fUvAP6+feQEoavr7sQvAviEH1+eZviOxdX1/6TX6eK7mz6S7VByn/6G09bYemrLd8lyMAqFIl0yFYAvAv4dCoUuBzYD9YAFnNG/fhFw1cSFp0jElDGe776PXQr2yXYoCoXCo0gJmkpqUCjSx8O+2VI6o1ZBVygUCoWH8fvBNCf8sBfPcB0X9yo6CoBTpn0GgDd6ngRgq7mBg0tO49GOmynUSjih7JPqXtJPUCvhazV/ynYYOY10BtsmmtDVuaVQ5BAZCcDhcPjVUCi0K3AQUAs0Ac+Hw2Gzf/1TwFMTHqUCgHK9ioUF+7E++na2Q1EoFB5FFYFTZIO+mGTTdsmutbl38jkeLgIncRAqA1ihUChyEuHzIaPRKXu9AUF4gA9XfGnKXjuXqPLVZzuE3CYWA58PgNn+JVkORqFQZMJ4ehUVQDkQBHYBzg+FQhdOZFCK1PiEn7WRV/GLgmyHolAoEsikCMdk42UxS5G/fOtvFr/9r53tMMaFlKB5NHnFtYBQKf0KhUKRi+xIETiFwqtI00T4XRuRbqc9u8EoFIqMyEgmCIVCH8L1+/0e8Afgkv6/5094ZIphaEKnMfYeewaPyHYoCoWiH10D28l2FINIQFNTsRRTzGG7aRy+NDdHHtzfTLajSI0jHTSRm5+rQqFQ7PRMkgWEQpFNZCwWF4Bf6L4/y9EoFIpMyLRXcS3wqXA4vA/Q0//3M8ArEx6ZIiU2FrMDaqqFQuEVfDpYHkp8VBYQimxQXAiFuVpTRnq3CJyygFAoFIrcRWiap2aJKRQTgYzFQNexpU1ABLMdjkKhyIBMexWzw+HwnUOW/Q24YILiUaTBdKMu2yEoFIp+DANMjwnAygJCMdVICXhURE0HrxYwkThoSgBWKBQKhULhEZzWVqyGBkwZIVSmJoIrFLlEpr2KbaFQqLr/8fpQKHQwsACUQd1Ucd3shz3bUVUodkZ8uvBUBrCjMoAVirzBkQ5CWUAoFAqFQqHwCMIw8O+5J6aM4hOBbIejUCgyINNexY3AYf2PbwCeAN4AfjuRQSkUCkWuYOhgWtmOIgEpEHjIlFix06CGJiceR1lAKBQKRW6jLCAUecaAB3BMRvGJXPX/Uih2ToxMNg6Hw9clPP57KBR6EigKh8OrJjowhUKhyAW6+yQdvTCj3CPyl9RBs1ETMxSK3EdZQCgUCkVuE3tFlcpR5BcDAnDU6SWgFWY7HIVCkQFpCcChUGj2KKt7QqHQ7HA4vHGCYlIoFIqcobJUeCvzUWoIzUOeFAqFYtw40kZTFhAKhUKRs/j32y/bISgUE4qMxcDvZ2N0NWVGZbbDUSgUGZBuBvB6YGD+SiqtQ6LSzRQKxU5ISSF0R7IdxSBS6oASgBVTj5rkOvFIZQGhUCgUCoXCS5gmIhjErwWYps/MdjQKhSID0u1VvAGsBa4E5gC+If8m3fxFCPFTIcRqIcSbQoj/CCHK+5fPFUL0CSFe7//3+8mORaFQKAawbHh7g4c8dx0NNA/Fo1Aoxo2DVBYQCoVCkcsoD2BFniGjUYTPh5QSv1aQ7XAUCkUGpNWrCIfD+wAfASqAZ4EHgLMBfzgctsPh8FSkm4WB3aWUewJrgG8mrHtfSrl3/7/PTUEsCoVCAUBVmaCu0kMmEFJHCJUBrJh6PPQryBukdBDKAkKhUChyl1gs2xEoFBOC7J/rJU0T/H5MVQROocg50u5VhMPht8Ph8NeBucDPgVOAplAotGySYktCSvmIlNLqf/oCUD8Vr6tQKBSjUeiHiIfa9jJeBE6hUOQ6DrbKAFYoFIocput3v8t2CArFxGKaCJ8PU8YwRCDb0SgUigwYT69iV+BI4GDgNaBtQiNKjwuBBxOezxNCvCaE+J8Q4vAsxKNQKHZSfIYgZo293ZShPIAVWeC1dblrO+LlybnKA1ihUChym5IvfznbISgUE8JA2Wtpmv+/vTuPj6q8Fz/+eWaSsO+KAkpBRCogxF0r7g5aW6XaesVq1dq6e229VStaK9V6tdW6VK/XavXntVXUurfWtuNWXKugaMF9oS4gKvtOknl+f8wkTUgCCQnMwuf9euWVOc95zjnfmcwD53znme8hlJXlZgCX5zkqSa3RopvApVKp3sBRwHFAN+B3wF7pdPrD9gwmhPAY0FQl8QtijA/l+lwAVAN35NbNBgbGGOeGEHYEHgwhjIgxLmpi/ycBJwGcfvrpzJo1qz3Dl0rCvHnz8h1C0Xnn4x7M6r8w32EAsHJ5FZ9+NpvlBVgGYnHNYmYtK85/dx0XzXvno+5svWk1ixbDrFnL8h1Oq61atapgzwfmxDksi4uYtaAw4wPHhtQUx4VqxWXLWPLRR4Sk90t3XBS32vP4+MUXMG8eC5LzmbPkc0KwCFhbOTa0obQoAQzMAj4gm/h9Ide2dSqV2rq2QzqdfqKtwcQYD1jT+hDC8WRLT+wfY7aifoxxJbAy93hqCOE9YBtgShP7vwm4CWDixImxf//+bQ1ZKkmOjdYpL68umNes87wubNJ3EzYtL4x46uu2oBv9exZeXC1VKH/jQjO4fw2117X9+/fMayzrosPCioL921atXEjnTAf6dyrM+GoV6usn5ZPjQgCLN92ULr17k+jSJd+hFATHRfHqtqAb/Xr0Y2mXLnQaMIB54SMG9B2Q77BKhmNDG0JLE8CfAh2BE3M/q4vAVu0VVFNCCAcB5wJ7xxiX1WvfFJgXY6wJIWxFtkTF++szFkmqb6vNC+mT7yQZS0BoAypLwrOvZ9hjuKUK2lskYw1gSSpioWNH4ooVYAJYRS4ZktRQDdXVUF7OlxLD8x2SpFZqUQI4nU4PWs9xtMT1QAcgnfuawQsxxlOAvYCLQwhVQAY4JcboHHpJG0wh1RANMUkmmgDWhrVkRb4jKE0xZvxqpSQVsdChA3HlynyHIbVZMpRTE6uJ1dWEsjJipnjv/yBtrFo6AzjvYoxbN9N+H3DfBg5HkuoUUnomUaAzgGOMYCKrJP31ZS8A1peMM4AlqajVzQCWilxZKKc6VhGrqqC8HFZ6Xi8VG68qJKmkFOYM4Eim7u7BKi2b9YTvjU0W1Ez4UpEdN944SJKKVejUibh8eb7DkNqsLFRQHVdBbgaw5/VS8SmaGcCSVKhWT3zl7lFZ99XtGCM1GShLhkbrate39mvetftZfV8hJqkpwBnA2ZmMniiWoh9/q4wQAh9/UdPk+1vrLhMzlCX8rF6SipUzgFUqykMFVXEl5dXVUFZG9KN/qeiYAJakNgrAqupIRVk26fVfv63OXyy9A7tvU3gJ4Eh0JmOJqk32JgL8463I3U/XcPWJ5XmOqjRkZwCbAJakYmUCWKUiOwO4inL8oF8qViaAJamN3v808teXq7n6xHLufCqb/D33m2Ukc3mbzxZGlq6AWfMim/cKJAJ0qoDXP8rwxUIYvHmgb49AIgGb9QysrMp9ph7h4y8ib36cXa4og84doLws0LUjdO8McxZAdU12f2VJ6L9VBzLkLwHdHG9mVfqSSeiQy/uedXNVXXvvrjBvSXZd5eBAh4pA/97Z90Kf7rBoafb3J3Mj3Tpl2wf0CXTtBFXVMGdBpCwJMUKvroE58yNbbBpYvvLfZaXLy2DBkuw46NEle1O6ACQTUJGLKRFgZVW2byLAkuUQCjy36sx5SSpyHToQ58/PdxRSm5XXloCo/baX5ydS0TEBLElttMOQBO/MqqEmE3npnciZhybp1/vfJ0V9ezZ9gjRqcHPZp3/337o/7DOq5bH8a2WSFZnCu9u0NYBLX1kim2DdYUjg5ff+/bXAeUuyv1dWwT/ejjQumpJfQ/fIdwTNy35w4sx5SSpWIZGg5qOP8h2G1GZluRIQhEAm1jixQypCJoAlqY12+3KCKe9mOPuW7MzbwZvlb1phgiSZgqwBHElYAqKkJRNw99M1fG9sku/s1/YxUJOJJBP/rqNdmzauLX9d+zuE7IzeEAKZXGN1TXZGfCCbbo4Rkons+kS9fs+/keEf/56sXHCyM4ALfJqyJKl5IVDz6af5jkJqs/LQgVWZbDmTFXEZn66amd+AJLWaVxWS1A5O+1o2uTnyS/n9NDwRkmRi4SWAY6xxBnCJSyYDu385wbZbts/fuTb5C9nkbiL3k0xkf8qS2Z9kItSrQ5ztU1GW/R3qbVO7vn6/bp0C1YU3XOpkrAEsSUUtsckmlH3pS/kOQ2qzitCRB+dfB8DSmoVs1bEVX1GUVBC8qpCkdpAIgau+X8b3xub3ixWFOgM4EkkUesFVtUkyAVXVsUHittB1qKCgE8Ax1jhuJKmYhcDKl1/OdxRSm5WHCuZWzwZg0tzLeWv5S3mOSFJreVUhSe2kEGphJUKSmkKcAUx0JmOJSyagJpPvKFqnQxlUF3DMkWgJCEkqYomePSnbYot8hyG1WUXoVPe4Oq6iLFTkMRpJ68IawJJUQpIFOgM4gyUgNgYfzCmsG7ytTYfyQE1N4cZsCQhJKm6hY0diVQEXm5daqFOia93jys77MLLzmDxGI2ldeFUhSSUkOwO4mh9/eCDLM0vzHU6dTKwhEbwJXCl76IUaFhTOW65FqmoiS1fkO4rmxZghWAJCkopWCIFVU6bkOwypzcpDh+yDGEmEJD2TffMbkKRW86pCkkpIh9CJqpjNaD216K48R/Nvq+IKKkLHfIeh9ejiY8q5+sTyfIfRKpv1DGw/pHBPhTJkLAEhSUWuYued8x2C1GYhBA7ofgwAryx90hIQUhHyqkKSSkhFohPPLn4YgKcW3VPXHuO6f829LdvWqoor/z1zQCoQHcoDfXsUbmmSbOkUT9Ukqai1w3mUNqwYY7uc/5aaSCQGGNHpK96kVipC1gCWpBJSRnmDGYM//vDAPEbT0JF9zsl3CFIjkcK9wIsx4wWWJEkb0JLf/Y4FF1wAwID33uOTIUPo9+qrzB49ms3+/nfKBw8GoGbuXJJ9+uQz1A2uQ6ITq5LV+Q5D0jryqkKSSkgIgc+qP+T8/ncwqvNezfbbpGxA3eOtOoxiTLfDqOy8L1t33J4+Zf3q1nVL9K57vH3n/YFskrnWoA4jGNfr9CaPsV3nPRssj+68b+uejLQBFPLNCSORBNbOlqRitvjaa/Mdgpoxq7KSVTNm1C3H6uq65C/AJ0OGADB79GgA5uy9Nx8PHMjHAwcye/vtWf7Xv2a3q6raKGYMd050Z0UHE8BSsXIGsCSVoG7J3hy9yQUczQVr79wK4zm3yfavdDu0XY8jKVsDuJAT1JKkteuwxx7EqipCeXHVyd8YZObN47OvfpV+06aR7N2bhf/934369Js6lbknnUSvyy5j1T//yfwf/ahu3dwTT2x23z3/+7/p8q1vsezPf6bqzTdZ+cILbHLzzSR69CB07EisroZkkpWTJ9Nh990hkSCUlRFjJITC/L9/9qr3uffgyezPt/MdiqR1YAJYkkqQXxuXWiYSC/ZiKxNrCI5lSSpqFTvvTGb+fJJ9++Y7FK2mfMQIqmbM4NPddqPrySez5Le/pd/UqcTly0luuSWQ/XZd3wceyPb/8pfpcsQRAGSWL2fWsGHN7nvB+eez4PzzG7TNXocbAva59VYWXXUVfR98kFDRPjdeizFS/dZblA0bRly4kNCjR4vOg/pXZGdEP77oTsb2PK5dYpG04ZgAlqQS84uBf813CFLRSIQkGTIkC7DUQiTToKa3JKn4lG+zTbZerAnggrLy5ZepmjGDbqeeyuL//d+6Uh3JTTdt0faJTp3Y4sMPm10fa2rILFpEzYcfUrbVVoQOHVj+yCPMO/tsqKqiYypFont3Vr74Ioneval69dUm9zP3hBMA+GTrrZtc3/2881h0+eUtirk1+v7xj1TkSl/U2qnrWP4w71dsUbFNux9P0vpnAliSJG20kpSRidUkQ+ElgDNkrAEsScUuBFa98goV226b70hUT/VbbwHQY8IEup91FrP33JPMnDnttv+QTJLs1Ytkr151bZ0PO4zOhx3W4n3EGIlLl1IzezZLbr2VpXfc0ahP/eRvxU47sWrKlBbtu/f//A/zTm/6Ph4Anx1ySJMJ7sOeH81uR/6yRceQVFhMAEuSpI1WMiSpoZpyOuQ7lEYyscZyLpJU5MqHD2f5H/+Y7zC0mtCxI5s99ljd437/+Adx+fI8R9VQCIHQtSuJoUPpddll9LrsslZtH6ur6+oKs2oVoUPDc53OhxzS7La1N7vr9+KLJDbdlJDMfiC97Sebt/6JSCoIXlVIkqSNWk2syXcITaqJ1STxpkGSVNQyGRZdeWW+o9BqMgsXkujdu245JBIkunTJY0TtL5Rl5/uFEBolf9dmk9xs49m77ELN7Nn/XpHJtFt8kjYsE8CSJGmjlSHD59Uf5TuMZhXizekkSS1XNmhQvkNQE5beeSeJHj3yHUbB6rjnnoSuXQHIfPEFkK1rXDsTWFLxsQSEJEnaaG1atgUPzruOVXElZ/f7LW+tmMLimnls32V/amIVHRPZ2UDLahZRTRWdE91IUEYiJKiOqwAoC03flTvGSCSSoYZAIBk87ZKkjY0Js8LU8cADCeV+y2ZN+s+YwaqXXyazYAEAcdkyqt58M79BSVpnXolIkqSNVp+y/syu+gCACR8dXNd+37xr8hRRQ6me38l3CJKkNirbeut8h6DV+Q2btaotHbH4N7+h4z77EFetosPuu+c7LEnryBIQkiRpo7Vp+ZYt7nty3yvolujNVh1G0T3Zh9M2uxqAXsnNOLvfb9miYpu6vt0S2bqCW3fcns3LB7Fnt8Pr1g3qMIIDenyH/uVbs23HXelfPoQx3Q6nc6I7vZKbcUD3Yzix7+VIkkpDp699Ld8hSOukfNgwMp99BkBcsYLQsWOeI5K0rpwBLEmSNlrJkGRC/9/Rs6xvi/r/ZItJDZZ/MfCvdY//c/Pr1rjt13ud3GA51eOYBsuHrLa+NsEsSZLaV/XMmfkOoSiE8nI67LUXAHHlylbfTE5S4XAGsCRJ2qi1NPm7oX2pw/B8hyBJageLr72WzKJF+Q5DOXHFCpY/+GC+wyge1dWAM4ClYmcCWJIkSZKk9aRs2DBq5s7NdxjKqf74Y7qddlq+wyga1R9+CEBcvpzQqVOeo5G0rkwAS5IkSZK0nvQ4+2zi0qX5DkM5mcWLqdhll3yHUTTKttoKgLhkCaFbtzxHI2ldmQCWJEmSJGk9CV26mAAuIHHJEhJduuQ7jKJT/cEHloCQipgJYEmSJEmS1pOaTz5h8Y035jsM5cRlywgmgFutZu5ckn365DsMSevIBLAkSZIkSetJsn9/Vjz+eL7DUE5cuZLQoUO+wyg6ie7dCZ075zsMSevIBLAkSZIkSetJhz32oPt//Ve+w1BOXLmSUFGR7zCKR4zZXybOpaJmAliSJEmSpPUkJBJ1STTlX1y1ykRma4QAZF83TJxLRcsEsCRJkiRJ61E0AVw4TGSuk+V/+hMhlwyWVHxMAEuSJEmStD6ZAC4YcdUqS0Csg2T//vkOQVIbmACWJEmSJGl9cuZkwTABvG4qdtgh3yFIagMTwJIkSZIkrU/OAC4YsaoKysvzHYYkbVAmgCVJkiRJWo8WX3ttvkNQrRitZStpo2MCWJIkSZKk9cwbwRUIk7+SNkImgCVJkiRJWo96XHQRmQUL8h2GJGkjZQJYkiRJkqT1KNmnD5l58/IdhrTOFl9zTb5DkNQGJoAlSZIkSVqPEr17k5k7N99hCLwhXyuFZJLMkiWUbb11vkOR1AYmgCVJkiRJWo+Sm21Gzaef5jsMqdVCRQU1n39O1xNOyHcoktrABLAkSZIkSetRondvS0CoOFVUkJk/n0TXrvmORFIbFFUCOIQwMYTwSQhhWu7n4HrrJoQQ3g0hvBVCODCfcUqSJEmSVCvRowcrnnoq32EIIIR8R1BUQi4BHDp3zncoktqgLN8BrIOrY4xX1m8IIQwHxgMjgP7AYyGEbWKMNfkIUJIkSZKkWqGiglhVle8wBNYAbqXQsSOZ+fNJbr55vkOR1AZFNQN4DcYBd8UYV8YYPwDeBXbJc0ySJEmSJAFQNmRIvkMQgIn4VgkVFWQWLSJ07JjvUCS1QTEmgM8IIbwWQrg1hNAr1zYA+Khen49zbZIkSZIk5V3m88/zHYKAqjfeyHcIRSV06EBmwQJCp075DkVSGxRcCYgQwmNAU98tuAD4X+ASIOZ+/wpo8a0oQwgnAScBnH766cyaNavN8UqlZp43p5AacVxITXNsSI05LtSczN//vtFegxbKuIjV1TB06Eb7d1gXcdky4uTJLKmsJPTqtfYN1CqFMjZU+gouARxjPKAl/UIINwN/yi1+AmxZb/UWubbV930TcBPAxIkTY//+/dsWrFSiHBtSY44LqWmODakxx4Wa8vmOO7LJppsSysvzHUpeFMK4yCxcyNLNN6dbAcRSLFYOGMBCoM/w4dYBXk8KYWyo9BVVCYgQQr96i4cB03OPHwbGhxA6hBAGA0OBFzd0fJIkSZIkNaVi1ChWvfZavsPYqFTPnMmS//u/uuXMsmWEzp3zGFHxCZ06QVkZoVu3fIciqQ2KKgEM/DKE8M8QwmvAvsBZADHGGcA9wOvAX4DTY4w1+QtTkiRJkqR/q9hhB1ak063eLrNkyXqIpjjFGFvVf/7557PgwgvrtotLlpDo2nV9hFayQpcuZObO9SZwUpEruBIQaxJj/M4a1l0KXLoBw5EkSZIkqUU67rEHc7/7XRbfcAPdzzqLjgceyKqXXqJsq61I9utHXLKExbfcwvKHHmr1vjt94xssf/BBOu63X93X9Dt97WvEVasoGzCAsiFDqJk9O7suBDILFrDisceo+eILkptsQtngwWSWLCE5YABx8WJWPPMMic6dWfTrX9P50ENZeuedbX7+H7d5D+tu2d1302X8eDJLlhC6dMljJMUn0aULmUWLCMlkvkOR1AZFlQCWJEmSJKkY1Z9Buejqq1l09dXN9u37xz+S2HRTEj17UjN7NnP23XeN+17+4IMArHjiibq29kjatud+8qXvn//MZwcfzPxzz6XbGWeQ3HTTfIdUVEKXLsSlS/MdhqQ2MgEsSZIkSdIGMOCDD1jx+OOUDRqU/T1kCJ3GjiXW1DQ7wzIxZAhbfPhhm49de4ya+fNJ9uq1Ttuuq1mzZhXGja5ipONakulqKHTpQly2LN9hSGojE8CSJEmSJG0AIZmk09ixAJRvs02D9g1xbKDVyd/62xarAf/6F8v+8Afmn3023f7zP/MdTlEJiWK7dZSkpjiSJUmSJElSyQoh0PmIIwBIdO6c52iKT69f/SrfIUhqIxPAkiRJkiSppIUQ6Pfii/kOoyh1ySXPJRUvE8CSJEmSJKnkJTffPN8hSFJemACWJEmSJEmSpBJlAliSJEmSJEmSSpQJYEmSJEmSJEkqUSaAJUmSJEmSJKlEmQCWJEmSJEmSpBJlAliSJEmSJEmSSpQJYEmSJEmSJEkqUSaAJUmSJEmSJKlEmQCWJEmSJEmSpBJlAliSJEmSJEmSSpQJYEmSJEmSJEkqUSaAJUmSJEmSJKlEmQCWJEmSJEmSpBJlAliSJEmSJEmSSlRZvgOQJEmSJEmSVhdjJMaY7zDWmxgjmUwm32GoyIQQCCG0ahsTwJIkSZIkSSooVVVVACSTyTxHsv706dMn3yGoCFVXVwNQXl7e4m1MAEuSJEmSJKlg1M76bU2CqxglEgkSCauzqnUSiQRVVVXEGFs8E9h3mSRJkiRJkgpGjLGkZ/5KbZVIJFpVHsUEsCRJkiRJkiQVidbWADYBLEmSJEmSJK0mhMAxxxxTt1xdXc2mm27K17/+9XY/1o033sjtt98OwG233casWbNavY9BgwbxxRdftHdoKgHWAJYkSZIkSZJW06VLF6ZPn87y5cvp1KkT6XSaAQMGrJdjnXLKKXWPb7vtNkaOHEn//v3Xy7G08XEGsCRJkiRJktSEgw8+mEceeQSASZMmcdRRR9Wte/HFF9l9993Zfvvt+cpXvsJbb70FwLJly/iP//gPhg8fzmGHHcauu+7KlClTAOjatSsXXHABo0ePZs8992TOnDkATJw4kSuvvJJ7772XKVOmcPTRR1NZWcny5csbzOydMmUK++yzDwBz585l7NixjBgxgu9///sNasL+/ve/Z5dddqGyspKTTz6Zmpqa9f5aqXA5A1iSJEmSJEkF64UXXmDZsmXtus/OnTuz2267rbXf+PHjufjii/n617/Oa6+9xgknnMDTTz8NwJe//GWefvppysrKeOyxxzj//PO57777uOGGG+jVqxevv/4606dPp7Kysm5/S5cuZbfdduPSSy/lRz/6ETfffDM/+clP6tZ/61vf4vrrr+fKK69kp512WmNsP/vZzxgzZgw//elPeeSRR7jlllsAeOONN7j77rt59tlnKS8v57TTTuOOO+7g2GOPXYdXSqXABLAkSZIkSZLUhFGjRjFz5kwmTZrEwQcf3GDdwoULOe6443jnnXcIIVBVVQXAM888ww9+8AMARo4cyahRo+q2qaioqKshvMMOO/Dkk0+uc2yTJ0/m/vvvB+BrX/savXr1AuDxxx9n6tSp7LzzzgAsX76cvn37rvNxVPxMAEuSJEmSJKlgtWSm7vp06KGHcvbZZ/PUU08xd+7cuvYLL7yQfffdlwceeICZM2fWlWZYk/LyckIIACSTSaqrq9e6TVlZGZlMBoAVK1astX+MkeOOO47LLrtsrX21cbAGsCRJkiRJktSME044gYsuuojtttuuQfvChQvrbgp322231bXvscce3HPPPQC8/vrr/POf/2zV8bp168bixYvrlgcNGsTUqVMBuO++++ra99prL+68804AHn30UebPnw/A/vvvz7333stnn30GwLx58/jXv/7VqhhUWkwAS5IkSZIkSc3YYostOPPMMxu1n3vuuUyYMIHtt9++wUze0047jc8//5zhw4fzk5/8hBEjRtCjR48WH+/444/nlFNOqbsJ3EUXXcQPfvADdtppJ5LJZF2/iy66iMmTJzNixAjuv/9+Bg4cCMDw4cP5+c9/ztixYxk1ahSpVIrZs2e34RVQsQv17xC4MZk4cWKcOHFivsOQCs6sWbPo379/vsOQCorjQmqaY0NqzHEhNea4UGvVljtIJIpz3mJNTQ1VVVV07NiR9957jwMOOIC33nqLioqKBv1WrVrVqE1qiebGyMknnzz1N7/5TaO7B1oDWJIkSZIkSWony5YtY99996WqqooYIzfccIOJXuWVCWBJkiRJkiSpnXTr1o0pU6bkOwypTnHOpZckSZIkSZIkrZUJYEmSJEmSJEkqUSaAJUmSJEmSJKlEmQCWJEmSJEmSpBJlAliSJEmSJEmqZ+7cuVRWVlJZWcnmm2/OgAED6pZXrVrVLsdIpVIMHDiQGGNd2ze+8Q26du3aLvuvb8qUKZx55pkAPPXUUzz33HOt3sfxxx/Pvffe26ptrrnmGm6//fa67QcMGMDKlSsB+OKLLxg0aFBd3xkzZrDffvsxbNgwhg4dyiWXXNLgtQGorKxk/PjxTR7rG9/4Brvttlur4mvOggULuOGGG+qWZ82axbe+9a122feDDz7I66+/vtZ+119/Pbfeemu7HNMEsCRJkiRJklRPnz59mDZtGtOmTeOUU07hrLPOqluuqKigurq6XY7Ts2dPnn32WSCbdJw9e3a77Hd1O+20E7/+9a+BdU8At1Z1dTW33nor3/72t+vakslkk0nN5cuXc+ihh3Leeefx1ltv8eqrr/Lcc881SMK+8cYb1NTU8PTTT7N06dIG2y9YsICpU6eycOFC3n///TbHvnoCuH///q1OfjenpQngE044geuuu65djmkCWJIkSZIkSVqL448/nlNOOYVdd92Vc889l4kTJ3LllVfWrR85ciQzZ84E4Pe//z277LILlZWVnHzyydTU1DS5z/Hjx3PXXXcBcP/993P44YfXrVuyZAn7778/O+ywA9tttx0PPfRQ3bpLLrmEYcOGMWbMGI466qi6OPbZZx9+/OMfs8suu7DNNtvw9NNPA9mk79e//nVmzpzJjTfeyNVXX01lZSVPP/10o5m9tTOQY4ycccYZDBs2jAMOOIDPPvusrs/UqVPZe++92XHHHTnwwAObTFw/8cQT7LDDDpSVldW1/fCHP+Tqq69ulEC/88472WOPPRg7diwAnTt35vrrr+fyyy+v6zNp0iS+853vMHbs2AavRe1rd8ghhzR4PVe3dOlSTjjhBHbZZRe23377un3MmDGj7m81atQo3nnnHc477zzee+89KisrOeecc5g5cyYjR44E4LbbbuMb3/gGqVSKQYMGcf3113PVVVex/fbbs9tuuzFv3jwAbr75ZnbeeWdGjx7NN7/5TZYtW8Zzzz3Hww8/zDnnnENlZSXvvfce7733HgcddBA77rgje+65J2+++WbdazBo0CBefPHFJp9Pa5gAliRJkiRJUkF74oknWvRTf2brrFmzeOKJJ/jiiy/q2p588kmeeOKJdY7j448/5rnnnuOqq65qts8bb7zB3XffzbPPPsu0adNIJpPccccdTfbdf//9mTx5MjU1Ndx1110ceeSRdes6duzIAw88wMsvv8yTTz7Jj370I2KMvPTSS9x33328+uqrPProo0yZMqXBPqurq3nxxRe55ppr+NnPftZg3aBBgxrMaN5zzz2bfR4PPPAAb731Fq+//jq333573WtbVVXFf/7nf3LvvfcydepUTjjhBC644IJG2z/77LPsuOOODdoGDhzImDFj+N3vftegfcaMGY36DhkyhCVLlrBo0SIA7r77bsaPH89RRx3FpEmTGvSdNGkSRx11VJPral166aXst99+vPjiizz55JOcc845LF26lBtvvJEf/OAHTJs2jSlTprDFFltw+eWXM2TIEKZNm8YVV1zRaF/Tp0/n/vvv56WXXuKCCy6gc+fOvPLKK+y+++51JS8OP/xwXnrpJV599VW23XZbbrnlFr7yla9w6KGHcsUVVzBt2jSGDBnCSSedxHXXXcfUqVO58sorOe200+qOs9NOO9Ul8duibO1dJEmSJEmSJB1xxBEkk8k19nn88ceZOnUqO++8M5Atb9C3b98m+yaTScaMGcNdd93F8uXLG9TEjTFy/vnnM3nyZBKJBJ988glz5szh2WefZdy4cXTs2JGOHTtyyCGHNNhn7SziHXfcsW5G8rqYPHkyRx11FMlkkv79+7PffvsB8NZbbzF9+nRSqRQANTU19OvXr9H2s2fPZtttt23UPmHCBMaNG8fXvva1FscyZcoUNtlkEwYOHMiAAQM44YQTmDdvHr1792bOnDm88847jBkzhhAC5eXlTJ8+vW7Gbq2//e1vPPzww3WzpVesWMGHH37I7rvvzqWXXsrHH3/M4YcfztChQ9caz7777ku3bt3o1q0bPXr0qPsbbLfddrz22mtANkn8k5/8hAULFrBkyRIOPPDARvtZsmQJzz33HEcccURdW22NZIC+ffvWzQhuCxPAkiRJkiRJKmi1ycfW6N+/P/3792/Qtu+++7Ypji5dutQ9LisrI5PJ1C2vWLECyCZujzvuOC677LIW7XP8+PEcdthhTJw4sUH7HXfcweeff87UqVMpLy9n0KBBdcdYkw4dOgDZ5HJLahXXfx6ZTGatN7mLMTJixAief/75Nfbr1KlTk/EOHTqUyspK7rnnnrq24cOHM3ny5Ab93n//fbp27Ur37t2ZNGkSb775Zl2CfNGiRdx3332ceOKJ3HPPPcyfP5/BgwfXrZs0aRKXXnppo7jvu+8+hg0b1qB92223Zdddd+WRRx7h4IMP5je/+Q1bbbXVGp9b7WsMkEgk6pYTiUTda3788cfz4IMPMnr0aG677TaeeuqpRvvJZDL07NmTadOmNXmcFStW0KlTpzXG0hJFUwIihHB3CGFa7mdmCGFarn1QCGF5vXU35jlUSZIkSZIklbhBgwbx8ssvA/Dyyy/zwQcfANmyDvfee29dzdx58+bxr3/9q9n97LnnnkyYMIGjjjqqQfvChQvp27cv5eXlPPnkk3X72GOPPfjjH//IihUrWLJkCX/6059aFXe3bt1YvHhxg+cxdepUAB5++GGqqqoA2Guvvbj77rupqalh9uzZPPnkkwAMGzaMzz//vC4BXFVVxYwZMxodZ9ttt+Xdd99tMoYLLrigQf3ko48+mmeeeYbHHnsMyM6aPvPMMzn33HPJZDLcc889/POf/2TmzJnMnDmThx56qK7Uw6RJk/jLX/5St27q1KlN1gE+8MADue6664gxAvDKK68A2UTzVlttxZlnnsm4ceN47bXXGr1G62Lx4sX069ePqqqqBiVA6u+7e/fuDB48mD/84Q9ANkn96quv1vV9++23G81kXhdFkwCOMR4ZY6yMMVYC9wH311v9Xu26GOMp+YlQkiRJkiRJG4tvfvObzJs3jxEjRnD99dezzTbbANnZrD//+c8ZO3Yso0aNIpVKNXmTtFohBM4++2w22WSTBu1HH300U6ZMYbvttuP222/ny1/+MgA777wzhx56KKNGjeKrX/0q2223HT169Ghx3IcccggPPPBA3U3gTjzxRP7+978zevRonn/++bpZzocddhhDhw5l+PDhHHvssey+++4AVFRUcO+99/LjH/+Y0aNHU1lZ2aD2cq2vfvWrjWb11hoxYgQ77LBD3XKnTp146KGH+PnPf86wYcPYbrvt2HnnnTnjjDN4+umnGTBgQIPZ3HvttRevv/46zz//PP/617/Ybbfd6tYNHjyYHj168I9//KPBMS+88EKqqqoYNWoUI0aM4MILLwTgnnvuYeTIkVRWVjJ9+nSOPfZY+vTpwx577MHIkSM555xzWvza1nfJJZew6667sscee9T97SA74/uKK65g++2357333uOOO+7glltuYfTo0YwYMaLBDe6effbZulIbbRFqs97FIoQQgA+B/WKM74QQBgF/ijG2Kh0+ceLEuPrUeknZIvmrf0VG2tg5LqSmOTakxhwXUmOOC7VWbTmCRKJo5i2uk1WrVlFRUbFO2y5ZsoSuXbuybNky9tprL2666aYGCdVCcdhhh/HLX/6yRXV11dArr7zCVVdd1eiGedD8GDn55JOn/uY3v9lp9f7FWAN4T2BOjPGdem2DQwivAIuAn8QYm7w9XgjhJOAkgNNPP51Zs2at92ClYjNv3rx8hyAVHMeF1DTHhtSY40JqzHGh1oox0qdPn5JPANfU1Ky13m5zvv/97/PGG2+wYsUKvvOd7zBy5Mh13tf6dPHFF/Phhx/ypS99Kd+hFJ3Zs2dz4YUXNvl3zWQyzJ07l+w82bUrqARwCOExYPMmVl0QY6yd/3wUMKneutnAwBjj3BDCjsCDIYQRMcZFq+8kxngTcBNkZwD7CaTUNMeG1JjjQmqaY0NqzHEhNea4UGs4A3jtmqpxW4i22267fIdQtA4++OBm12UyGfr169fiMVJQCeAY4wFrWh9CKAMOB3ast81KYGXu8dQQwnvANsCU9RiqJEmSJEmSJBW8Yvso5QDgzRjjx7UNIYRNQwjJ3OOtgKHA+3mKT5IkSZIkSZIKRkHNAG6B8TQs/wCwF3BxCKEKyACnxBgtMCRJkiRJkiRpo1dUCeAY4/FNtN0H3Lfho5EkSZIkSZKkwlZsJSAkSZIkSZKk9eqjjz5i8ODBzJuX/ZL5/PnzGTx4MDNnzmzUd/ny5ey9997U1NQwc+ZM9tlnHwBuu+02zjjjjAZ999lnH6ZMWfNtq44//nieeuopAMaPH88777zT5uejjZsJYEmSJEmSJKmeLbfcklNPPZXzzjsPgPPOO4+TTjqJQYMGNep76623cvjhh5NMJts9jlNPPZVf/vKX7b5fbVxMAEuSJEmSJEmrOeuss3jhhRe45ppreOaZZzj77LOb7HfHHXcwbtw4AJLJJL17927R/nv37s1ZZ53FiBEj2H///fn8888B6NGjBxUVFQDsueeePPbYY1RXV7fDM9LGygSwJEmSJEmStJry8nKuuOIKzjrrLK655hrKy8sb9Vm1ahXvv/9+3czgLbfckvvvv79F+1+6dCk77bQTM2bMYO+99+ZnP/sZANdeey1f+cpXAEgkEmy99da8+uqr7fOktFEqqpvASZIkSZIkaeOz9A9/oPqjj9ptf2VbbkmXI45Ya79HH32Ufv36MX36dFKpVKP1X3zxBT179mxy2xDCGtsTiQRHHnkkAMcccwyHH354k/379u3LrFmz2HHHHdcar9QUE8CSJEmSJEkqaC1J1ra3adOmkU6neeGFFxgzZgzjx4+nX79+Dfp06tSJFStWNLl9nz59mD9/foO2efPmsckmmzTZv7mE8YoVK+jUqdM6PAMpyxIQkiRJkiRJUj0xRk499VSuueYaBg4cyDnnnNNkDeBevXpRU1PTZBJ455135tlnn+XTTz8FYMqUKaxcuZItt9wSgEwmw7333gvAnXfeyZgxY5qM5e2332bkyJHt9dS0ETIBLEmSJEmSJNVz8803M3DgwLqyD6eddhpvvPEGf//73xv1HTt2LM8880yj9s0224xrr72Wgw8+mMrKSn74wx8yadIkEolsOq5Lly68+OKLjBw5kieeeIKf/vSnjfYxZ84cOnXqxOabb97Oz1AbE0tASJIkSZIkSfWcdNJJnHTSSXXLyWSSl19+ucm+p59+OldffTUHHHBAo3Xjxo1j3LhxzR7nqquuWmMcd955JyeffHILo5aa5gxgSZIkSZIkaR3tsMMO7LvvvtTU1LT7vnv27Mlxxx3X7vvVxsUZwJIkSZIkSVIbnHDCCa3eZt68eWvt893vfnddwpEacAawJEmSJEmSJJUoE8CSJEmSJEmSVKJMAEuSJEmSJElSiTIBLEmSJEmSJEklygSwJEmSJEmSVE+MkTFjxvDoo4/Wtf3hD3/goIMOymNU0ropy3cAkiRJkiRJUiEJIXDjjTdyxBFHsO+++1JdXc3555/PX/7yl3yHJrWaCWBJkiRJkiRpNSNHjuSQQw7hF7/4BUuXLuXYY49lyJAh+Q5LajUTwJIkSZIkSVITLrroInbYYQcqKiqYMmVKvsOR1okJYEmSJEmSJBW0F9/OMG9xbLf99e4W2GWbtd8aq0uXLhx55JF07dqVDh06tNvxpQ3JBLAkSZIkSZIKWkuStetLIpEgkcjf8aW28t0rSZIkSZIkSSXKBLAkSZIkSZIklShLQEiSJEmSJEnNmDhxYr5DkNrEGcCSJEmSJEmSVKJMAEuSJEmSJElSiTIBLEmSJEmSJEklygSwJEmSJEmSJJUoE8CSJEmSJEmSVKJMAEuSJEmSJElSiTIBLEmSJEmSJK3mgQceoLKyssFPIpHg0UcfzXdoUquU5TsASZIkSZIkqdAcdthhHHbYYXXLN910E3fccQcHHnhgHqOSWs8EsCRJkiRJkrQGb7/9NhdffDHPPfcciYRfqFdx8R0rSZIkSZIkNaOqqopvf/vb/OpXv2LgwIH5DkdqNWcAS5IkSZIkqaBNWfI35lfPabf99SrbjJ26jm1R3wsvvJARI0Zw5JFHttvxpQ3JBLAkSZIkSZIKWkuTte3tqaee4r777uPll1/Oy/Gl9mACWJIkSZIkSVrN/Pnz+e53v8udd95Jt27d8h2OtM5MAEuSJEmSJEmrufHGG/nss8849dRTG7RPmDDBchAqKiaAJUmSJEmSpNVMmDCBCRMm5DsMqc0S+Q5AkiRJkiRJkrR+mACWJEmSJEmSpBJlAliSJEmSJEmSikSMsVX9TQBLkiRJkiSpYIQQqKmpyXcYUsHKZDKEEFrc35vASZIkSZIkqWDUJraqqqpIJBKtSnQVk0wmQyaTyXcYKiIxxrr3TGvGhTOAJUmSJEmSVFDKy8spKysr2eQvwNy5c/MdgopMCIGysjLKy8tbtV3BzQAOIRwBTAS2BXaJMU6pt24C8D2gBjgzxvjXXPtBwLVAEvhtjPHyDR23JEmSJEmS2k8IoaQTwCEEEgnnZmr9K8R32XTgcGBy/cYQwnBgPDACOAi4IYSQDCEkgf8BvgoMB47K9ZUkSZIkSZKkjVrBzQCOMb4BTdaxGAfcFWNcCXwQQngX2CW37t0Y4/u57e7K9X19w0QsSZIkSZIkSYWpEGcAN2cA8FG95Y9zbc21S5IkSZIkSdJGLS8zgEMIjwGbN7HqghjjQ+vxuCcBJwEcf/zxK08++eTp6+tYUrFatmzZJp07d/4i33FIhcRxITXNsSE15riQGnNcSE1zbGg9+FJTjXlJAMcYD1iHzT4Btqy3vEWujTW0r37cm4CbAEIIU2KMO61DHFJJc2xIjTkupKY5NqTGHBdSY44LqWmODW0oxVQC4mFgfAihQwhhMDAUeBF4CRgaQhgcQqgge6O4h/MYpyRJkiRJkiQVhIK7CVwI4TDgOmBT4JEQwrQY44ExxhkhhHvI3tytGjg9xliT2+YM4K9AErg1xjgjT+FLkiRJkiRJUsEouARwjPEB4IFm1l0KXNpE+5+BP7fyUDe1Pjppo+DYkBpzXEhNc2xIjTkupMYcF1LTHBvaIEKMMd8xSJIkSZIkSZLWg2KqASxJkiRJkiRJaoWSSQCHEA4KIbwVQng3hHBerm1wCOEfuba7czeJa2rbCbk+b4UQDlzTPqVi0sy4uCWE8GoI4bUQwr0hhK5NbJcKIUwNIfwz93u/eut2zLW/G0L4dQghbMjnJLWHZsZGCCFcGkJ4O4TwRgjhzDVs3z2E8HEI4fp6bY4NFbUQwq0hhM9CCNPrtfUOIaRDCO/kfvdqZtvjcn3eCSEcV6/dcaGi1sy4uCR3HjUthPC3EEL/JrarDCE8H0KYket7ZL11LbpGkQpVU+Mi1/6fIYQ3c+/7X65h+2QI4ZUQwp/qtTkuVNRCCFuGEJ4MIbyeGwM/yLV7LqWCUBIJ4BBCEvgf4KvAcOCoEMJw4BfA1THGrYH5wPea2HY4MB4YARwE3JD7D6m5fUpFYQ3v4bNijKNjjKOAD4Ezmtj8C+CQGON2wHHA7+qt+1/gRGBo7ueg9fcspPa3hrFxPLAl8OUY47bAXWvYzSXA5NXaHBsqdrfR+H17HvB4jHEo8HhuuYEQQm/gImBXYBfgonoXN44LFbvbaPy+vSLGOCrGWAn8CfhpE9stA46NMdZeY1wTQuiZW7fWaxSpwN3GauMihLAvMA4YnXvfX7mG7X8AvLFam+NCxa4a+FGMcTiwG3B67hrDcykVhJJIAJMdIO/GGN+PMa4ie9E+DtgPuDfX5/+AbzSx7TjgrhjjyhjjB8C7uf01t0+pWDT5Ho4xLoLsbEegE9CoEHiM8ZUY46zc4gygUwihQwihH9A9xvhCzBYQv52mx5VUyJr79/1U4OIYYwYgxvhZUxuHEHYENgP+Vq/NsaGiF2OcDMxbrXkc2XMoaP5c6kAgHWOcF2OcD6SBgxwXKgVNjYvac6mcLjR9LvV2jPGd3ONZwGfAprnzr5Zco0gFq5n/L04FLo8xrsz1ae48agvga8Bv67U5LlT0YoyzY4wv5x4vJvshxwA8l1KBKJUE8ADgo3rLH+faFsQYq1drI4RwaAjh4rVs21y7VCyafQ+HEP4f8CnwZeC6XFv9cVHfN4GXcydzA3L7abRPqYg0NzaGAEeGEKaEEB4NIQwFCCHsFEL4be5xAvgVcHYT+3RsqBRtFmOcnXv8KdkPPxqMC9Z8LuW4UEkK2ZJBHwFHk5sBvNq4qN93F6ACeA/oQzPXKFKR2wbYM1fG4e8hhJ0BQgj9Qwh/rtfvGuBcIFOvzXGhkhJCGARsD/wDz6VUIEolAdwqMcaHY4xNfVVL2ijEGL8L9Cf7qeSRubZG4yKEMILs17FO3uBBShteB2BFjHEn4GbgVoAY45QY4/dzfU4D/hxj/LiZfUglKzfzJOYe1x8X0kYnxnhBjHFL4A5y5bSaGhe52Vu/A75b+w0TqUSVAb3JfvX9HOCeEEKIMc6KMR4MEEL4OvBZjHFqHuOU1quQvcfOfcAPV/vGiOdSyqtSSQB/QrZuY60tcm09Qwhlq7W1dNvm2qViscb3cIyxhuxX37/Z1Ma5r2c9QLZ+3Xv19rlFc/uUikRzY+Nj4P5c2wPAqCa23R04I4Qwk2xtu2NDCJfj2FDpmpNLYNUmspr6Su+azqUcFyp1d9D8uVR34BHgghjjC7nmubTsGkUqNh8D98esF8nO8N1ktT57AIfmzqPuAvYLIfwex4VKRAihnGzy944YY+11hedSKgilkgB+CRiau3NoBdmbuj0MPAl8K9fnOOChJrZ9GBifq286mGxR7RfXsE+pWDT5Hg4hbA11tbYOBd5cfcPcTUoeAc6LMT5b25776sqiEMJuue2PpelxJRWy5v59fxDYN9dnb+Dt1TeMMR4dYxwYYxxEtgzE7THG8xwbKmEPkz2HgubPpf4KjA0h9MrdsGQs8FfHhUpVbYmgnHE0fS5VQfbDxNtjjLV1TWtnf7XkGkUqNg+SO48KIWxDtuzJF/U7xBgnxBi3yJ1HjQeeiDEe47hQKcid69wCvBFjvKreKs+lVBBKIgGcqxV0BtlB8wZwT4xxBvBj4L9CCO+SrSt0CzSsdZrrdw/wOvAX4PQYY80a9ikVhabew7nf/xdC+CfwT6AfcDE0qgF8BrA18NMQwrTcT9/cutPI3rThXbK17B7dQE9Jahdr+Pf9cuCbufFxGfB9aL6mYxMcGypqIYRJwPPAsBDCxyGE75EdF6kQwjvAAbnlBuMixjgPuITshysvkb2ZYu3NgRwXKmrNjYsQwvQQwmtkL9J/kOtb//+L/wD2Ao6vdy5VmVvX5DWKVCyaGRe3AluFEKaTnd17XIwxNlEDuDmOCxW7PYDvkJ3ZXvvv/sF4LqUCEbIftkmSJEmSJEmSSk1JzACWJEmSJEmSJDVmAliSJEmSJEmSSpQJYEmSJEmSJEkqUSaAJUmSJEmSJKlEmQCWJEmSJEmSpBJlAliSJEmSJEmSSlRZvgOQJEmS1odUKjUDOD2dTj+1no9zG/BtYFY6nR60Po/VXlKp1PeAa4EuwNB0Ov1unkOSJEnSemICWJIkSUUplUotqbfYGVgJ1OSWT06n0yM2YDi/TKfTP9mAx2uTdDp9C3BLKpWK+Y5FkiRJ65cJYEmSJBWldDrdtfZxKpWaCXw/nU4/lr+IJEmSpMJjAliSJEklqX5SOJVKTQRGkJ0lPA6YCXwz93NWrv176XT6b7ltewBXAQcDGeD/ARel0+kaWiCVSj0FPAPsB4wCngSOB34NHAK8BRyRTqdn5vpH4PRcLJsD1wC3Ab8DRgJ/AY5Jp9OrmjjWJrm+Y3KxzgD2TqfTmVQq9WPgTKA7MAs4LZ1OP96S5yBJkqTS4E3gJEmStLE4hGxCtRfwCvBXsufDA4CLgd/U63sbUA1sDWwPjAW+38rjjQe+k9v/EOB5sonk3sAbwEWr9T8Q2BHYDTgXuAk4BtiSbBL4qNqOqVRqQSqVGpNb/BHwMbApsBlwPhBTqdQw4Axg53Q63S23/5mtfA6SJEkqcs4AliRJ0sbi6XQ6/VeAVCr1B+Bw4PJ0Ol2TSqXuAm5KpVI9gQ5kZ/72TKfTy4GlqVTqauAkGiaJ1+b/pdPp93LHexQYXluiInf8S1br/8t0Or0ImJFKpaYDf0un0+/X23574P8A0ul0z3rbVQH9gC/lbub2dG6bmtxzGZ5KpT6vnW0sSZKkjYszgCVJkrSxmFPv8XLgi3olHZbnfncFvgSUA7NzM20XkE389m3j8VZf7tqwe6v717oCeBf4WyqVej+VSp0HkEsG/xCYCHyWSqXuSqVS/Vv5HCRJklTknAEsSZIkNfQR2ZrAm6TT6ep8B7M26XR6MdkyED9KpVIjgSdSqdRL6XT68XQ6fSdwZyqV6k42if0LsmUpJEmStJEwASxJkiTVk06nZ6dSqb8Bv0qlUhcCS4DBwBbpdPrv+Y2usVQq9XXgTeA9YCFQA2RyNYAHAM8CK8jOIk7mK05JkiTlhyUgJEmSpMaOBSqA14H5wL1k6+wWhFQqtSSVSu2ZWxwKPEY2Uf08cEM6nX6SbP3fy4EvgE/JlrCYkIdwJUmSlEchxpjvGCRJkqSilUqlbgaOAuak0+kh+Y6nJVKp1HeBq4GOZG9O936eQ5IkSdJ6YgJYkiRJkiRJkkqUJSAkSZIkSZIkqUSZAJYkSZIkSZKkEmUCWJIkSZIkSZJKlAlgSZIkSZIkSSpRJoAlSZIkSZIkqUSZAJYkSZIkSZKkEmUCWJIkSZIkSZJK1P8HnrANN8CbxPsAAAAASUVORK5CYII=\n",
"text/plain": [
"